


# Appendix

# **Supporting Documentation**

Volume 31

# Table of Contents Volume 31

| Section                                                                       | Page # |
|-------------------------------------------------------------------------------|--------|
| Appendix A - Assumptions                                                      | 1      |
| Appendix B - Glossary                                                         | 7      |
| Appendix C – Southern Variant Overview of the Forest Vegetation Simulator     | 23     |
| Appendix D – Sources and Contacts                                             | 86     |
| Texas Forest Service Contacts                                                 | 87     |
| Forestry Services Vendor Database: Herbicide Application Vendors              | 92     |
| Forestry Services Vendor Database: Mechanical Site Prep Vendors               | 95     |
| Forestry Services Vendor Database: Prescribed Fire Vendors                    | 99     |
| Forestry Services Vendor Database: Tree Planting Vendors                      | 103    |
| Texas Forest Service Best Management Practices Product and Vendor Guide       | 106    |
| Native Grass Seed Suppliers                                                   | 123    |
| Appendix E – Dallas Urban Forest Advisory Committee Recommendations           | 227    |
| Appendix F – Dallas Urban Forest Advisory Committee Recommended Plant Species | 237    |
| Sources and Contacts Literature Cited                                         | 241    |

#### **GREAT TRINITY FOREST**

# Appendix A

Assumptions

#### **GENERAL ASSUMPTIONS**

#### **Acreages**

Non-forested: 1,410.1 acres

Forested 4,677.6 acres (1,042.5 of which is under mitigation)

1,000.0 acres of managed forest stands (Management Stands)

235.3 acres within Corps mitigation land (Mitigation Management Stands)

3,442.2 acres of unmanaged forests ("Wilderness")

#### Forest Inventory and Vegetation Classification

It is assumed that the forest inventory data and vegetation classification is correct.

In 2001 a vegetation classification of the forest was conducted using satellite imagery. Non-vegetated areas such as water were removed from the image initially and then a computer analysis of the image fit the remaining cells into 27 classes. These classes were then analyzed to determine their vegetation composition based on 100 field observation points. A forest inventory was then conducted based on this classification. As new field data was acquired, the classes were altered to better reflect the true vegetative cover. In 2004 the final vegetation map of 12 land-cover classes was complete after an analysis that considered more than 600 samples taken in the field over a period of approximately 3 years. The field data was provided to the planning team already summarized to a per acre basis.

#### **Geographic Data**

Soils: Soil maps and descriptions are assumed to be accurate. Soils data was obtained

from the Natural Resources Conservation Service (NRCS). The field data used to develop the soil maps and descriptions was originally collected from 1965-1972.

Topography: 2 foot contour data was provided by the City of Dallas. It is assumed to be

accurate.

GIS Layers: Geographic Information System (GIS) data was provided by the City of Dallas,

including, but not limited to: Great Trinity Forest Boundary, US Army Corps of Engineers Mitigation Land Boundaries, Non management areas, etc. These data

are assumed to be accurate.

#### Additional Literature

The additional literature is provided so the forester or forest manager has the information necessary to develop a healthy forest and to deal with common issues. This information is not meant to be all inclusive and it is important that all activities are implemented with appropriate licenses, permits and safety procedures.

#### FOREST MANAGEMENT ASSUMPTIONS

#### **Project Initiation Dates**

Management activities are assumed to begin in 2010. US Army Corps of Engineers Mitigation Lands are assumed to fall under City of Dallas management and oversight in the year 2025.

#### **Biological Assumptions**

All plantings will suffer heavy mortality. For budgeting purposes, it is assumed that although stands are monitored for survival, no stands will need to be replanted.

#### Stand Site Selection

To select potential planting areas, an overlay analysis was performed on the forest. The analysis considered vegetation, elevation, and soils when rating areas. Therefore, the geographic data and vegetation classes used for the analysis are assumed to be correct.

#### **Herbicide Application**

Herbicide application and mixing rates were obtained from the herbicide label. Actual applied per acre rates were estimated based on the forest inventory and photos taken from the field. It is assumed that these estimated rates are correct.

#### **GROWTH AND YIELD ASSUMPTIONS**

The following describes the assumptions specific to the forest growth and yield projections that were performed.

#### General Assumptions when Making Forest Growth Projections

The following list outlines some explanations for discrepancies between observed and predicted yields (Adapted from the WINYIELD Growth Projection, Yield Estimation, and Financial Analysis Program Users Manual).

- 1. Broken tops, rot, excessive sweep, forking, and other quality defects generally are not accounted for by growth and yield models. When the goal is to estimate merchantable volume yield, users must compensate by adjusting model output before drawing conclusions.
- 2. A model can only estimate the <u>average</u> stand conditions for a particular combination of input parameters. Users must maintain the perspective that actual stand conditions can vary considerably from the average predicted by the model.
- 3. A user's estimate of the input parameters is subject to error. This problem is often referred to as garbage in, garbage out. Misinterpretation of the units used also is a common source of misapplication. For example, users sometimes become confused on whether the site index reference age is 25 or 50. This could result in a gross error for estimating volume yield.
- 4. Stocking in actual stands is not uniform. The model may indirectly account for clumping depending upon the criteria used for locating research plots. Only individual tree distance dependent models possess the necessary spatial resolution to directly account for growth reduction due to clumping.

- 5. Understory competition may vary considerably from stand to stand depending upon locale, past stand history, and the degree of effectiveness of controls. The model may not be able to accommodate varying levels of understory competition.
- 6. Expansion of estimates from a per-acre basis to a per-stand basis can lead to over estimation of yield unless areas out of production are excluded from the number of acres in the stand estimate. Often overlooked are areas where there are roads, ditches, powerlines, windrows, rock outcroppings, and other pockets within the stand which are not growing crop trees.
- 7. Matching actual stand conditions to those assumed by the model is difficult. Geographic locale, past stand history, species composition, soil conditions, incomplete inventory data, or other factors may cause assumptions of the model to be violated. The validity of subsequent projections is difficult to determine. Sensitivity analysis is helpful to examine this effect.
- 8. The model may be poor. Growth estimates may vary in reliability depending upon the quality of the data (e.g., remeasurement frequency and time interval) used by the researcher to derive the model and according to the "biological reasonableness" exhibited when extrapolating the model. Statistical variation is impossible to quantify in all but the simplest models. Model validation studies attempt to quantify the accuracy and precision of models by comparing predicted values against known values in independent data sets. Also, models implemented through software such as WINYIELD are subject to programming errors or "bugs."

#### **Input Parameter Assumptions**

The Forest Vegetation Simulator (FVS) was used to conduct growth projections. FVS is the standard model used by a variety of government, state, educational, and other agencies including private landowners and industry (Dixon 2002). The model has been calibrated for a number of geographic regions and has been widely reviewed. The following outlines the FVS input parameters used in making the projections and the corresponding assumptions.

Stand and Location Data Used to calibrate growth model

Inventory Year: 2006Average Tree Age: 30 years

• Site Index: 60 base age 50 for Quercus alba white oak

Elevation: 400 feet
Latitude: 32.727°
Longitude: 96.734°

Forest Type: 706 Sugarberry (Hackberry)/elm/green ash

• Ecological Unit Code: 255Ce Trinity River Alluvial Valley

• Forest Location Code: Davy Crocket National Forest (Nearest National Forest)

• FVS Variant: Southern

#### Tree Data

Input tree data was derived from the forest inventory conducted by the City of Dallas. Tree data used for modeling represents the average forest acre within the Great Trinity Forest.

Preexisting species modeled:

• Green ash Fraxinus pennsylvannica

Hackberry species Ulmus spp.Eastern cottonwood Populus deltoids

• Eastern redcedar Juniperus virginiana

Willow species Salix spp.Elm species Ulmus spp.

• Hickory Species (pecan) Carya spp.

#### Operation Assumptions

#### **Planting Operations**

All planting operations assumed 60% survival of trees in the first year; which is a conservative survival estimate. It was assumed that planting in mitigation units would primarily occur in openings created by the overstory removal

Table 1. Planted species modeled and their assumed planting densities.

|                    |                      | Per Acre Planting Rates |                  |  |
|--------------------|----------------------|-------------------------|------------------|--|
| <b>Common Name</b> | Scientific           | <b>Management Units</b> | Mitigation Units |  |
| black walnut       | Juglans nigra        | 43                      | 21               |  |
| bur oak            | Quercus macrocarpa   | 108                     | 54               |  |
| shumard oak        | Quercus shumardii    | 86                      | 43               |  |
| pecan              | Carya illinoinensis  | 107                     | 53               |  |
| common persimmon   | Diospyrus virginiana | 86                      | 43               |  |

#### Natural Regeneration

It was assumed that natural regeneration would only occur in the "Wilderness" area of the forest. Wilderness projections included the following natural regeneration to occur per acre every ten years (Total of 40 trees per acre):

| • | Green ash          | 12 |                                         |
|---|--------------------|----|-----------------------------------------|
| • | Hackberry          | 6  |                                         |
| • | Elm species        | 6  |                                         |
| • | Pecan              | 4  |                                         |
| • | Willow species     | 4  |                                         |
| • | Eastern cottonwood | 4  |                                         |
| • | Eastern redcedar   | 2  |                                         |
| • | Bur oak            | 4  | (added every ten years after year 2056) |

#### Overstory Removal by Herbicide Injection

The following assumptions were made to simulate overstory removal operations.

- Simulated herbicide injections were assumed to be 95% effective
- In the mitigation units, it was assumed that large openings would be made to release existing desired species or create areas for planting.
- The injection work would focus on larger trees.
- It was assumed that roughly half the stand would be removed in a mitigation unit overstory removal operation and therefore half the amount of trees would need to be planted per acre.

Great Trinity Forest, Dallas, Texas: Forest Planning Assumptions

Snag and Carbon Sub model Assumptions

The Fire and Fuels Extension (FFE) to FVS was used to model snags and carbon sequestration.

Snag Model

The following parameters were used in calculations. Note a snag is a standing dead tree.

Default FFE algorithms were used to model the fate of snags and their transition from the "hard" to "soft" state.

The following assumptions were made for this model.

No snags existed in the forest at the time of the inventory.

Carbon Model

The following parameters were used in calculations.

All carbon reports are shown in imperial tons.

Biomass was predicted using the predefined FFE algorithms.

Carbon was modeled on a 10 year cycle. The trend between cycles is assumed to be linear.

FVS default calculations were used for "Down Dead", "Forest Floor" and "Shrubs/Herbs" carbon.

The following assumptions were made for this model.

It is assumed that there are no snags ("Standing Dead" and "Belowground Dead") at the beginning of the projection.

It is assumed that the default values for "Down Dead", "Forest Floor" and "Shrubs/Herbs" are correct.

FINANCIAL ASSUMPTIONS

Equipment costs obtained from the City of Dallas Parks and Recreation Department and from calls to local equipment dealers. Other costs are from the Forestry Suppliers Catalog. Cost data is from 2008.

Personnel costs were increased by the inflation rate, labor cost increases, and fringe benefits.

Inflation Rate: 4.06%

Price Increase for Labor: 0.43%

Fringe Benefits: 33.16%

#### **GREAT TRINITY FOREST**

# Appendix B

Glossary

## **Glossary of Forestry Terminology**

-A-

Access Road- a temporary or permanent access route for vehicles into forestland

**Acre**- a unit of land measurement that contains 43,560 square feet. Sometimes expressed as 10 square chains

Afforestation- the establishment of trees on an area that was not forested before

Uneven-aged stand (all-aged)- a stand of trees with three or more different age classes

**Annuals**- plants that live or grow for only one year or one growing season

Artificial regeneration- replacing the harvested forest by planting seed or seedlings

\_

-B-

**Backfire**- a burning technique used to reduce the amount of fuel in the forest. The fire is set to burn against the wind or back into the fuel as the wind blows the flames away from the fire

**Basal Area**- the sum of the cross sectional areas in square feet of the trees on an acre when measured at 4.5 feet above the ground

**Bedding-** a site preparation method in which special disking equipment is used to concentrate surface soil and forest litter into a ridge or bed elevated six to ten inches (6-10) above the normal soil level on which forest seedlings are to be planted

**Best Management Practices (BMPs)**- a practice or combination of practices determined to be an effective and practicable (including technological, economical, and institutional considerations) means of preventing or reducing the amount of water pollution generated by non-point sources

**Board foot**- a piece of wood measuring 1 foot x 1 foot x 1 inch. The term is commonly used to measure the amount of wood in trees, sawlogs, or boards

Bottom Lands- a term often used to define lowlands adjacent to streams and rivers

**Browse**- leaves and twigs of woody plants, including those from brambles and vines, typically eaten by animals such as white-tailed deer and rabbits.

**Browse Lines**- a distinct absence of woody plant vegetation from ground-line to a height that browsers like goats and deer can reach. The presence of browse lines is an indication of excessive use of this component of the plant community

**Buffer strip**- a narrow piece of land bordering an area such as a stream or road with forestry practices that are different from adjacent areas

**Bunchgrass-** a grass that grows in a well-defined clump, as opposed to sod-forming grass that spreads by stolons or rhizomes

-

-C-

Canopy- the layer of covering in a forest made up of tree crowns

**Carrying capacity**- the maximum number of individuals of a wildlife species an area can support during the most unfavorable time of the year

**Chip-n-saw**- a mill process that allows small diameter trees 7 to 10 inches, DBH, to be converted into lumber and into chips for pulp and paper manufacturing

**Clearcutting**- a silvicultural system where all the trees are removed, regardless of size, and all the growing space becomes available for new plants, leading to the establishment of an even-aged stand

**Codominant**- trees with medium crowns forming the upper level of the crown cover and receiving full light from above and partial light on the sides

**Commercial thinning**- the removal of marketable trees from maturing young growth to reduce competition and accelerate growth of the remaining trees

**Competition**- the struggle among trees and other plants for nutrients, water, light, space, and other requirements for existence

Conifer- trees with needles or scales instead of leaves, usually evergreen, and often called softwoods

**Consulting forester**- a self-employed registered forester who provides landowners with professional forestry advice and services for a fee

**Contamination**- a general term signifying the introduction into water of micro-organisms, chemicals, organic wastes or sewage, which renders the water unfit for its intended use

**Contour**- an imaginary line on the surface of the earth connecting points of the same elevation. A line drawn on a map connecting points of the same elevation

**Cool-season grasses** – grasses that make their active growth during the cooler months of the year, generally September through November and March through May

**Coppice**- a regeneration method in which the forest stand regenerates primarily from stump and root sprouts

**Cord**- a stack of round or split wood containing 128 cubic feet of space, including wood, bark, and air space (4' x 4' x 8')

**Cost Share Program**- a program where a group (usually a government agency) shares in the cost of carrying out forest management practices on private property as an incentive to owners to make a long-term investment in their land

Crop Trees- trees selected to be grown for the final harvest cut

Crown- the branches and foliage of a tree

**Crown Ratio**- the ratio of the tree crown to the total height of the tree

**Cruise**- a survey of forest land to estimate species, stocking, volumes, products, size, and quality levels of standing timber

**Cubic Foot**- a volume measurement containing 1728 cubic inches of material such as a piece of wood measuring 1 foot on each side. A cubic foot of wood contains 12 board feet.

Cull- a tree or log of merchantable size that has no market value because of shape, damage, or species

-D-

Culvert- a conduit or pipe through which surface water can flow under roads

Cutting Cycle- the planned time interval between major harvesting operations in the same stand

**Deciduous Tree**- a tree that loses all its leaves at some time during the year

**DBH**- an abbreviation for tree diameter at breast height (4.5 feet above the ground)

**Diameter**- the length of a straight line going from one side of a tree trunk to another and passing through the center

**Diameter at Breast Height**- four and one-half feet above ground-level, the height where a tree's diameter is measured (also known as DBH)

Dibble- also called a planting bar. A tool used for planting bare-root seedlings by hand

Direct Seeding- a method of artificial regeneration in which tree seeds are sown on a prepared site

**Dominant**- a tree with a crown extending above the general level of the canopy and receiving full sunlight from above and also from the sides

**Dormant-season burn-** prescribed fire implemented during the dormant season (generally October – March for warm-season plants)

-

-E-

**Endangered Species**- a species where the remaining members may not be sufficient to reproduce enough offspring to ensure survival of the species

Epicormic- Growing from a dormant bud that has been exposed to light and air

**Even-aged Management**- a system of management leading to the trees in the forest being approximately the same age

Evergreen- a tree that retains some or all of its leaves throughout the year

**Exotic species** (also **alien** or **nonnative species**)- a species, including its seeds, eggs, spores, or other biological material capable of propagating it, that is not native to a particular ecosystem.

-F-

Firebreak- a natural or man-made opening used to prevent the spread of fire

**Firelane**- a permanent barrier to the spread of fire which will be maintained over time for the specific purpose of stopping the spread of fire or for access to an area for the control of a fire

**Fireline**- a barrier used to stop the spread of fire constructed by removing fuel or rendering fuel inflammable by using water or fire retardants

Flanking fire – a fire set to spread at right angles to the prevailing wind

Forage- leaves, stems, buds and bark that can be eaten for food and energy

Forest- a plant community in which the dominant vegetation is trees and woody plants

**Forest Management**- the art and science of applying technical forestry principles and practices and business techniques to the management of a forest

**Forest Management Plan**- usually a written document that includes overall guidelines and recommended management practices to meet a landowner's objectives

**Forest Practice**- an activity relating to the growing, protecting, harvesting, or processing of forest tree species on forest land and to other forest management aspects such as wildlife, recreation, etc.

Forest Road- an access route for vehicles into forest land

Forest Site- refers to the combination of soil and topography

**Forest Stand**- a group of trees similar enough to allow treatment as a single unit in a forest management plan

**Forestry**- the science, art, and practice of managing, and using trees, forests and their associated resources while sustaining these resources for this and future generations

**Fungus** (pl. fungi)- A nongreen plant with a vegetative body formed of tubular filamentous cells (hyphae). Fungi reproduce by spores

-G-

**Grade**- the slope of a road or trail expressed as a percent of change in elevation per unit of distance traveled

**Growing-season burn-** prescribed fire implemented during the growing season (generally April – September for warm-season plants)

**Growing Stock**- all live trees in a forest or stand, including saw timber, pole timber, saplings, and seedlings

**Gully Erosion**- erosion process whereby water accumulates in narrow channels, and over short periods of time removes soil from this narrow area to substantial depths (one foot plus)

\_

-H-

**Habitat**- the natural environment of a specific plant or animal containing all the necessary resources for the plant or animal to live, grow, and reproduce

Hand Planting- the planting of tree seedlings with simple hand tools

**Hardpan**- a natural or man-made solid clay layer within the soil resulting in poor drainage and poor plant growth

**Hardwood**- a term describing broadleaf trees such as oaks, maples, ashes, and elms

Harvesting- the felling, loading, and transportation of forest products, roundwood or logs

**Haul road**- road used to haul wood products. May vary from paved to primitive but are permanent woods (tertiary) roads

**Heading fire-** a fire set to spread with the prevailing wind, or uphill; generally fast-moving

**Herbicides**- chemicals used to kill or slow down the growth rate of plants. Herbicides should be applied by qualified applicators and by following label directions

**Host**- A plant which provides nutrition for an invading parasite.

-

-1-

**Improvement Cut**- a type of intermediate harvest with the primary objective of improving the remaining stand

**Intermediate Cut**- the removal of trees from the forest sometime between establishment and final harvest with the primary objective of improving the quality of the remaining forest stand

**Intermediate Trees**- trees shorter than dominant and co-dominant trees but with crowns extending into the crown cover formed by the dominant and co-dominant trees

**Intermittent**- that part of the drainage network, with a clearly defined stream channel, which provides flow continuously during some seasons of the year, but little or no flow during the remainder of the year

**Intolerant**- plants that will not grow in the shade of other plants or trees

**Inundate-** to cover with water (flood)

**Invasive species-** a species whose dominance causes harm to the economy or the environment. Invasive species can be native or exotic. Native species can become invasive if environmental conditions change substantially and the balance of the ecosystem is disrupted. Exotic species can become invasive when they are freed from the environmental constraints that are unique to their native range

-

**J-Root**- the growth form of tree roots resulting from improper hand planting where some or all of the roots are bent upward as the tree is placed in the ground

\_

-L-

Leave Trees- trees left in or immediately adjacent to a harvest area to reseed the area

Litter- represents dead natural fuels on the ground, including leaves, needles, sticks, limbs, grass, etc.

Log- a unit of measure of the trunk portion of a tree equal to 16 feet in length

Logging- the felling and transportation of wood products from the forest to a delivery location

**Logging Debris/Slash**- the unwanted, or unutilized and generally unmarketable accumulation of woody material such as large limbs, tops, cull logs, and stumps that remain in the forest as residue after logging

\_

-M-

**Mast**- refers to the reproductive bodies of plants and is often associated with wildlife food sources. Mast is divided into hard mast and soft mast. Hard mast is the production of hard-shelled seeds, such as acorns and hickory nuts while soft mast is the production of seeds that are covered with fleshy fruit, such as berries.

MBF- an abbreviation meaning one thousand board feet

Mechanical Planting- planting tree seedling with a planting machine that is pulled by a tractor

Merchantable- that part of a tree that can be turned into a product and sold for a profit

**Merchantable Timber**- a stand where the trees are of sufficient size and volume to provide a commercial cut

**Migration**- the cyclic or periodic travel of an animal as it returns eventually to its original place of departure. Migration is often annual and is closely linked with the cyclic pattern of the seasons.

Mineral Soil- organic free soil that contains rock less than 2 inches in maximum dimension

Mortality- expressed as trees or percent of growth dying within a certain time frame

**Mulch**- a natural or artificial layer of plant residue or other materials covering the land surface which conserves moisture, holds soil in place, aids in establishing plant cover, and minimizes temperature fluctuations

**Mulching-** providing any loose covering for exposed forest soil, using organic residues, such as grass, straw or wood fibers to protect exposed soil and help control erosion

**Multiple Use**- refers to shared use of managed forests for many benefits, such as wood products, wildlife, watershed benefits, recreation, forage, aesthetics, or clean air

-

-N-

**Native species-** a species that historically occurred or currently occurs in a particular ecosystem (other than as a result of an introduction). Native species have adapted over thousands of years to their surrounding plant and animal communities and local climate and soil conditions.

Natural Stand- a stand of trees resulting from natural seed fall or sprouting

**Non-point Sources**- sources of water pollution which are: (1) induced by natural process, including precipitation, seepage, percolation, and runoff; (2) not traceable to any discrete or identifiable point; and (3) best controlled through the utilization of Best Management Practices, including planning and processes techniques

**Nutrients**- mineral elements in the forest ecosystem such as nitrogen, phosphorus, and potassium usually in soluble compounds that are present naturally or they may be added to the forest environment as forest chemicals, such as fertilizer

\_

-0-

Old-growth Forest- a forest that has never been changed by management or harvesting

Overtopped- trees within a stand with crown entirely below the crowns of other trees in the stand

-

-P-

Palatability- indicated by the preference an animal shows for feeding on a particular plant

Parasite- An organism that lives on or in, and obtains its food from, another organism (host)

Partial Cut- a silvicultural cutting system, which removes at any one time less than the total tree stand

Pathogen- An agent that causes disease

**Pedicelled plants-** Grass plants that are each setting on a small pedicel of soil. The presence of pedicelled plants is a warning sign of sheet erosion on the site.

**Perennial**- a plant that produces aboveground parts from the same root system for at least three years or growing seasons

**Perennial stream**- that part of the drainage network which provides water flow at all times except during extreme drought

**Pesticides**- a collective term meaning chemicals, including herbicides and insecticides, which are used to kill pests such as weeds, diseases, insects, or unwanted trees

**Point Source Pollution**- sources of water pollution (generally a man-caused pollutant) which can be traced to a specific place or location (i.e. a pipe)

**Pollutant**- dredged soil, solid wastes, incinerator residue, sewage, garbage, sewage sludge, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock sand, cellar dirt, and industrial, municipal, and agricultural waste discharged in the water. (P.L. 92-500 Section 502(6))

**Pollution**- the presence in a body of water (or soil or air) of substances of such character and in such quantities that the natural quality of the environment is impaired or rendered harmful to health and life or offensive to the senses

**Pre-Commercial Thinning**- practiced in very young stands to decrease the number of trees and reduce competition for water and nutrients

Prescribed Burning- the controlled use of fire to achieve forest management objectives

**Prescription**- usually a written recommendation by a forester prescribing present and future management practices for a forest stand

Pruning- the removal of branches from standing trees to produce higher quality knot-free clear wood

**Pulpwood**- trees cut primarily for conversion into wood pulp for the manufacture of paper, fiberboard, or other wood fiber products

**Pure live seed-** the percentage of seed that is capable of germinating soon after planting in a suitable environment

-

**Reforestation**- the regeneration of new trees on an area where the forest has been or will be removed; either naturally by seed fall or artificially by direct seeding or planting seedlings

Regeneration- the practice of replacing old trees either naturally or artificially with new trees

**Regeneration Cut**- a harvest operation to remove the old trees and leave environmental conditions favorable for the establishment of reproduction

**Release Cutting**- an operation to release young desirable trees from competition with other trees of the same size or larger and overtopping trees

Residual Stand- trees, often of saw log size, left in a stand after logging to grow until the next harvest

Residual Trees- live trees left standing after the completion of harvesting

**Resistance**- The ability of a host to slow the development of a disease

**Rill Erosion**- an erosion process in which numerous small channels only several inches deep are formed; occurs mainly on disturbed and exposed soils

Ring fire- a fire set by igniting the entire perimeter of an area, allowing the fire to converge in the center

**Rotation Period**- the number of years required to establish and grow trees to a specified size, product or condition of maturity

**Runoff**- in forest areas, that portion of precipitation that flows from a drainage area on the land surface or in open channels

**Ruts**- depressions made by the tires of vehicles such as skidders, log trucks, pickups, etc. usually under wet conditions

-S-

**Sanitation Cut**- the harvesting or destruction of trees infected or highly susceptible to insects or diseases to protect the rest of the forest stand

Sapling- a small tree usually between 1 and 4 inches DBH

**Sawlog**- a log large enough to produce a sawn product, usually at least 10 to 12 inches DBH and 8 inches or larger at the small end

**Scarify**- to break up the forest floor and top soil preparatory to natural or direct seeding (or the planting of seedlings)

**Sediment**- solid material in suspension, being transported or moved from its original site.

**Seed Tree Method**- a natural regeneration method where all but a few trees are removed from the harvest area at one time. The remaining trees are carefully selected high quality trees uniformly distributed to provide seed to establish a new forest stand

Seedbank- the collection of seed occurring naturally in the soil

**Seedbed**- the soil prepared by natural or artificial means to promote the germination of seed and the growth of seedlings

**Seedling**- usually defined as a tree less than 1 inch DBH, which has grown from seed, either naturally or in a nursery

**Selection Method**- a natural regeneration method where individual trees or small groups of trees are harvested at periodic intervals based on their physical condition or degree of maturity

**Shade Tolerance**- a tree's capacity to develop and grow in the shade of and in competition with other trees

**Shearing**- a site preparation method that involves cutting brush, trees, and other vegetation at the ground level using tractors equipped with angled or v-shaped cutting blades

**Sheet Erosion**- the removal of a fairly uniform layer of soil removed from the soil surface by water runoff

**Sheet Flow**- runoff from a rainstorm intense enough to cause direct overland flow of water before entering a receiving stream

**Shelterwood Method**- a natural regeneration method in which the trees are removed in a series of two or more cuttings to allow the establishment and early growth of the new seedlings under the partial shade and protection of the older trees

**Silvics**- the study of the life history and general characteristics of forest trees and stands with particular reference to locality factors, as a basis for the practice of silviculture (SAF Interpretation)

**Silvicultural Activities**- all forest management activities, including intermediate cuttings, harvest, log transport, and forest road construction (EPA interpretation)

**Silviculture**- generally, the science and art of cultivating (i.e. growing and tending) forest crops, based on a knowledge of silvics; and more particularly, the theory and practice of controlling the establishment, composition, constitution and growth of forests (SAF Interpretation)

**Site Index**- a measure of site quality based on the height of the dominant and codominant trees of the stand at a specified age (usually 25 or 50 years)

**Site Preparation**- any treatment of a forest site to get it ready for planting, direct seeding, or natural regeneration such as clearing, chemical vegetation control, burning, disking, bedding, windrowing, or raking

**Snags**- dead or partially dead standing trees. Snags may be classified as "hard" or "soft." Hard snags are essentially sound wood while soft snags are in an advanced state of decay

**Soil**- the unconsolidated mineral and organic material on the immediate surface of the earth that serves as a natural medium for the growth of land plants

**Soil Conservation**- using the soil within the limits of its physical characteristics and protecting it from unalterable limitations of climate and topography

**Soil Productivity**- the output or productive capability of a forest soil to grow timber crops

Spores- The reproductive unit of fungi. Spores function in the same way that seeds do for higher plants.

**Stand**- a group of trees occupying a given area and sufficiently uniform in composition, age, and condition so as to distinguish them from adjoining forest areas

**Stem**- the trunk of the tree

**Stocking**- the number of trees in a forest stand

**Stream**- a well-defined natural channel that has a flow anywhere below its headwaters greater than 5 cfs at least 50% of the time (EPA - Army Corp Section 404). A permanently or intermittently flowing body of water that follows a defined course

- **a.** ephemeral stream (or drain) means a stream that flows only during and for short periods following precipitation and flows in low areas that may or may not have a well-defined channel
- **b.** intermittent stream means a stream that flows only during wet periods of the year (30-90% of the time) and flows in a continuous, well-defined channel
- **c.** perennial stream means a stream that flows throughout a majority of the year (greater than 90% of the time) and flows in a well-defined channel

**Streambanks**- the usual boundaries, not the flood boundaries, of a stream channel. Right and left banks are named facing downstream

**Streamside Management Zone (SMZ)**- forested area immediately adjacent to stream channels. Managed for forest resources with specific attention given to measures that can be taken to protect both instream and downstream water quality as well as other beneficial uses. The purpose of an SMZ is

to reduce the quantity of sediment and logging wastes reaching the streams and to provide shade to prevent water temperature increases

**Strip-heading fire-** fire set by a series of strips ignited upwind of a firebreak or blackline intended to burn with the wind into the firebreak or backing fire

**Succession**- the orderly progression through time of changes in community composition, usually described in terms of plant life

Superior seedlings- seedling grown from seed produced by parent trees of high genetic quality

**Sustainable Forest Management**- the management of forestland to meet the needs of the present without compromising the ability of future generations to meet their own needs

**Sustainable Forestry Initiative**- an American Forest and Paper Association (AFPA) program started in 1994 and implemented as an industry standard in 1997 with a commitment to sustainable forestry that is open to public monitoring and evaluation

-

-T-

**Thinning**- cutting or removing certain trees to reduce competition and allow the remaining trees to grow faster

**Threatened Species**- a species where the population is declining to dangerously low numbers but still has enough members to maintain or increase its population

**T.S.I.** (**Timber Stand Improvement**)- the performance of practices such as pruning, thinning, and weeding to improve the quality of a forest stand

**Tract**- a parcel of land considered separately from adjoining land because of differences in ownership, timber type, management objectives, or other characteristics

Tree Crown- a collective term for the limbs, branches, and leaves of a tree

\_

-U-

**Uneven-aged Management**- management of forests in such a way as to get a spread of age classes ranging from small seedlings to mature trees

\_

Warm-season grasses- grasses that make their active growth during late spring and summer

Water Body- an area of standing water with relatively little or slow movement (ponds, lakes, bays)

**Water Pollution**- contamination or other alteration of the physical, chemical or biological properties of any natural waters of the state, or other such discharge of any liquid, gaseous or solid substance into any waters of the state, as well, or is likely to create a nuisance or render such waters harmful or detrimental or injurious to public health, safety or welfare, or to domestic, commercial, industrial, agricultural, recreational, or other legitimate beneficial uses, or to livestock, wild animals, birds, fish or other aquatic life (EPA definition)

**Water Quality**- a term used to describe the chemical, physical, and biological characteristics of water, usually in respect to its suitability for a particular purpose

**Watershed Area**- all land and water within the confines of a drainage divide or a water problem area consisting in whole, or in part, of land needing drainage or irrigation

**Wetlands**- the U.S. Army Corps of Engineers and the U.S. Environmental Protection Agency jointly define wetlands as *Those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas.* 

**Wildfire Control**- actions taken to contain and suppress uncontrolled fires

Wildfires- uncontrolled fires occurring in forestland, brushland, and grassland

Windrow- slash, residue, and debris raked into piles or rows

**Wing Ditch**- a water turnout or diversion ditch constructed to move and disperse water away from the road and side ditches into adjacent undisturbed areas so that the volume and velocity of water is reduced on slopes

\_

#### Literature Cited

Brittingham, M.C. and C.A. DeLong. 1998. Management Practices for Enhancing Wildlife Habitat.

Pennsylvania State College of Agricultural Sciences, Cooperative Extension. <a href="http://pubs.cas.psu.edu/FreePubs/pdfs/uh107.pdf">http://pubs.cas.psu.edu/FreePubs/pdfs/uh107.pdf</a> > Accessed 21 Aug 2007.

Harper, C.A., G.E. Bates, M.P Hansbrough, M.J. Gudlin, J.P. Gruchy and P.D. Keyser. 2007. Native Warm-

Season Grasses: Identification, Establishment and Management for Wildlife and Forage Production in the Mid-South. University of Tennessee Extension PB1752.

<a href="http://www.utextension.utk.edu/publications/wildlife/default.asp">http://www.utextension.utk.edu/publications/wildlife/default.asp</a> Accessed 20 Nov 2007.

Harris R. and B. Laudensayer. Dead & Dying Trees: Part of a Healthy Forest. California Forest Stewardship Program. <a href="http://www.ceres.ca.gov/foreststeward/html/snags.html">http://www.ceres.ca.gov/foreststeward/html/snags.html</a> Accessed 20 Dec 2007.

Marks, R. 2006. Invasive Species. Natural Resources Conservation Service and Wildlife Habitat Council,

Fish and Wildlife Habitat Management Leaflet Number 39. <a href="http://www.whmi.nrcs.usda.gov/technical/leaflet.htm">http://www.whmi.nrcs.usda.gov/technical/leaflet.htm</a> Accessed 29 Aug 2007.

McGinty, A. 2000. Risks Associated with Rangeland Health and Sustainability. No. 5 in the Risk Management for Texans Series. Texas Agricultural Extension Service, the Texas A&M University System. <a href="http://texnat.tamu.edu/riskmgmt/risk5.htm">http://texnat.tamu.edu/riskmgmt/risk5.htm</a> Accessed 25 Oct 2007.

Sekerak, C.M. and G.W. Tanner. 1994. Making the Most of Your Mast. University of Florida/Institute of

Food and Agricultural Sciences (IFAS) Extension SS-FOR-3.

< http://www.sfrc.ufl.edu/Extension/pubtxt/ssfor3.htm > Accessed 20 Dec 2007.

Shackelford, C.E., E.R. Rozenburg, W.C. Hunter and M.W. Lockwood. 2005. Migration and the Migratory

Birds of Texas: Who They Are and Where They Are Going. Texas Parks and Wildlife PWD BK W7000-511.

<a href="http://www.tpwd.state.tx.us/publications/pwdpubs/media/pwd\_bk\_w7000\_0511.pdf">http://www.tpwd.state.tx.us/publications/pwdpubs/media/pwd\_bk\_w7000\_0511.pdf</a> Accessed 10 Sept 2007.

Texas Forest Service. 2007. Glossary of Forestry Terminology.

<a href="http://txforestservice.tamu.edu/main/article.aspx?id=187&terms=glossary">http://txforestservice.tamu.edu/main/article.aspx?id=187&terms=glossary</a> > Accessed 20 Oct 2007.

USDA Forest Service. 1989. Insects and Diseases of Trees in the South. Protection Report R8-PR16.

<a href="http://www.forestpests.org/southern/">http://www.forestpests.org/southern/</a> Accessed 18 Oct 2007.

#### **GREAT TRINITY FOREST**

# Appendix C

Overview of the Southern Variant of the Forest Vegetation Simulator United States Department of Agriculture Southern (SN)
Variant Overview

Forest Service

Forest Management Service Center

Fort Collins, CO

2001


**Forest Vegetation Simulator** 

Last Revised: February 2008





**Forest Vegetation Simulator Staff** 



## Original authors:

Dr. Dennis Donnelly USDA-FS-WOD-FMSC, Fort Collins, CO

Barry Lilly USDA-FS-WOD-FMSC, Fort Collins, CO

Erin Smith USDA-FS-WOD-FMSC, Fort Collins, CO

## **TABLE OF CONTENTS**

| TABLE OF CONTENTS                                              | 3  |
|----------------------------------------------------------------|----|
| QUICK GUIDE TO DEFAULT SETTINGS                                |    |
| 1.0 INTRODUCTION                                               |    |
| 2.0 GEOGRAPHIC RANGE                                           |    |
| 3.0 CONTROL VARIABLES                                          |    |
| 3.1 Location Codes                                             |    |
| 3.2 Species Codes                                              | 9  |
| 3.3 Habitat Type, Plant Association, and Ecological Unit Codes |    |
| 3.4 Site Index                                                 |    |
| 3.5 Maximum Density                                            | 15 |
| 4.0 GROWTH RELATIONSHIPS                                       | 18 |
| 4.1 Height-Diameter Relationships                              | 18 |
| 4.2 Bark Ratio Relationships                                   | 21 |
| 4.3 Crown Ratio Relationships                                  | 22 |
| 4.3.1 Crown Ratio for Newly Established Trees                  | 25 |
| 4.4 Crown Width Relationships                                  | 26 |
| 4.5 Crown Competition Factor                                   |    |
| 4.6 Small Tree Growth Relationships                            | 31 |
| 4.6.1 Small Tree Height Growth                                 |    |
| 4.6.2 Small Tree Diameter Growth                               |    |
| 4.7 Large Tree Growth Relationships                            |    |
| 4.7.1 Large Tree Diameter Growth                               |    |
| 4.7.2 Large Tree Height Growth                                 |    |
| 5.0 MORTALITY MODEL                                            |    |
| 5.1 Background Mortality                                       |    |
| 5.2 Density-Related Mortality                                  |    |
| 6.0 REGENERATION                                               |    |
| 7.0 VOLUME                                                     |    |
| 8.0 FIRE AND FUELS EXTENSION (FFE)                             |    |
| 9.0 INSECT AND DISEASE EXTENSIONS                              |    |
| 10.0 LITERATURE CITED                                          |    |
| 11.0 APPENDICES                                                |    |
| Appendix A Ecological Unit Codes (FUC) Codes                   | 60 |

# **QUICK GUIDE TO DEFAULT SETTINGS**

| Parameter or Attribute                 | Default Setting                     |                                     |  |  |
|----------------------------------------|-------------------------------------|-------------------------------------|--|--|
| Number of Projection Cycles            | 1 (10 if using Suppose)             |                                     |  |  |
| Projection Cycle Length                | 10 years                            |                                     |  |  |
| Location Code (National Forest)        | 80101 – NF in Alabama<br>District   | <ul> <li>Bankhead Ranger</li> </ul> |  |  |
| Ecological Classification Code         | 231Dd (Quartzite and Ta             | alladega Slate Ridge)               |  |  |
| Slope                                  | 5 percent                           | •                                   |  |  |
| Aspect                                 | 0 (no meaningful aspect             | )                                   |  |  |
| Elevation (Default location)           | 7 (700 feet)                        |                                     |  |  |
| Latitude (Default location)            | 32.37                               |                                     |  |  |
| Longitude (Default location)           | 86.30                               |                                     |  |  |
| Site Species                           | 63 (white oak)                      |                                     |  |  |
| Site Index                             | 70 (total age; 50 years)            |                                     |  |  |
| Maximum Stand Density Index            | Forest Cover Type specific          |                                     |  |  |
| Maximum Basal Area                     | Forest Cover Type specific          |                                     |  |  |
| Volume Equations                       | National Volume Estimator Library   |                                     |  |  |
| Pulpwood Volume Specifications:        |                                     |                                     |  |  |
| Minimum DBH / Top Diameter Inside Bark | Hardwoods                           | Softwoods                           |  |  |
| All location codes                     | 4.0 / 4.0 inches                    | 4.0 / 4.0 inches                    |  |  |
| Stump Height                           | 1.0 foot                            | 1.0 foot                            |  |  |
| Sawtimber Volume Specifications:       |                                     |                                     |  |  |
| Minimum DBH / Top Diameter Inside Bark | Hardwoods                           | Softwoods                           |  |  |
| All location codes                     | 12.0 / 9.0 inches 10.0 / 7.0 inches |                                     |  |  |
| Stump Height                           | 1.0 foot                            | 1.0 foot                            |  |  |
| Sampling Design:                       |                                     |                                     |  |  |
| Large Trees (variable radius plot)     | 40 BAF                              |                                     |  |  |
| Small Trees (fixed radius plot)        | 1/300 <sup>th</sup> Acre            |                                     |  |  |
| Breakpoint DBH                         | 5.0 inches                          |                                     |  |  |

### 1.0 INTRODUCTION

The Forest Vegetation Simulator (FVS) is an individual tree, distance independent growth and yield model with linkable modules called extensions, which simulate various insect and pathogen impacts, fire effects, fuel loading, snag dynamics, and development of understory tree vegetation. FVS can simulate a wide variety of forest types, stand structures, and pure or mixed species stands.

New "variants" of the FVS model are created by imbedding new tree growth, mortality, and volume equations for a particular geographic area into the FVS framework. Geographic variants of FVS have been developed for most of the forested lands in the United States.

The Southeast (SE) variant was developed in 1996 using relationships found in the Southeast TWIGS model and applied to Alabama, Georgia, and South Carolina. There was need for a variant that covered more of the forested area in the southeast United States.

Using data from Forest Inventory and Analysis (FIA), the Southern (SN) variant was developed using completely new growth equations and expanded to cover all southern states including the area previously covered by the Southeast TWIGS variant. Development of the SN variant of FVS began in 1998 and was released for production use in 2001. Development of the variant began as a cooperative effort of the Southern Research Station, Southern Regional Office, and the Forest Management Service Center using the FIA data from all 13 states of the Southern Region, Forest Service Research data, and data from the Bureau of Indian Affairs. All model relationships were developed by FMSC staff.

To fully understand how to use this variant, users should also consult the following publications:

Essential FVS: A User's Guide to the Forest Vegetation Simulator (Dixon 2002) Keyword Reference guide for the Forest Vegetation Simulator (Van Dyck 2000)

These publications can be downloaded from the Forest Management Service Center (FMSC), Forest Service, U.S. Department of Agriculture website or obtained in hard copy by contacting any FMSC FVS staff member. Other FVS publications may be needed if one is using an extension that simulates the effects of fire, insects, or diseases.

### 2.0 GEOGRAPHIC RANGE

The SN variant covers forest areas in all of the southeastern states including Florida, Georgia, Alabama, Mississippi, Louisiana, the Carolinas, Virginia, Kentucky, Tennessee, Arkansas, and parts of Texas and Oklahoma. The suggested geographic range of use and corresponding national forests covered in the SN variant are shown in figure 2.0.1.

In addition, the SN variant may be used to simulate the forest types within the Central States (CS) variant range in southern Missouri and southern Illinois.

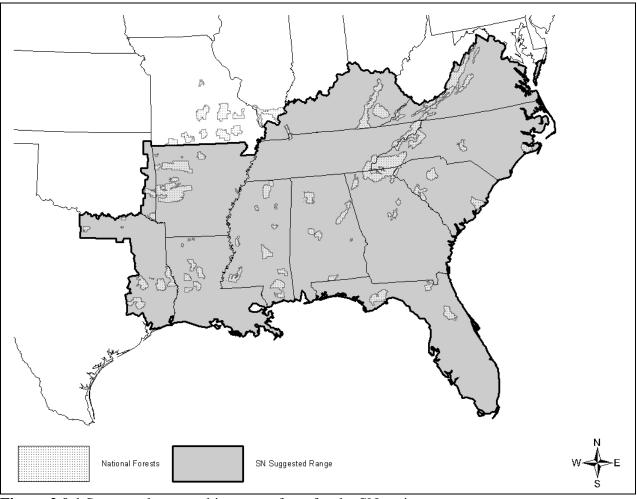



Figure 2.0.1 Suggested geographic range of use for the SN variant.

### 3.0 CONTROL VARIABLES

FVS users need to specify certain variables used by the SN variant to control a simulation. These are entered in parameter fields on various FVS keywords usually brought into the simulation through the SUPPOSE interface data files or they are read from an auxiliary database using the Database Extension.

### 3.1 Location Codes

Most location codes in the SN variant use a 5-digit code. The first digit of the code represents the Forest Service Region Number, the second and third digits represent the Forest Number, and the fourth and fifth digits represent the District Number.

If the location code is missing or incorrect in the SN variant, a default forest code of 80101 (National Forests in Alabama, Bankhead Ranger District) will be used. A complete list of location codes recognized in the SN variant, and their associated default latitude, longitude, and elevation are shown in table 3.1.1.

**Table 3.1.1** Location codes used in the SN variant.

|                             |              | Location |          |           |              |
|-----------------------------|--------------|----------|----------|-----------|--------------|
| USFS National Forest        | District     | Code     | Latitude | Longitude | Elevation    |
| National Forests in Alabama | Bankhead     | 80101    | 32.37    | 86.30     | 7 (700 ft)   |
|                             | Conecuh      | 80103    |          |           |              |
|                             | Oakmulgee    | 80104    |          |           |              |
|                             | Shoal Creek  | 80105    |          |           |              |
|                             | Talledega    | 80106    |          |           |              |
|                             | Tuskegee     | 80107    |          |           |              |
| Daniel Boone                | Morehead     | 80211    | 37.99    | 84.18     | 12 (1200 ft) |
|                             | Stanton      | 80212    |          |           |              |
|                             | Berea        | 80213    |          |           |              |
|                             | London       | 80214    |          |           |              |
|                             | Somerset     | 80215    |          |           |              |
|                             | Stearns      | 80216    |          |           |              |
|                             | Redbird      | 80217    |          |           |              |
| Chattahoochee-Oconee        | Armuchee     | 80301    | 34.34    | 83.82     | 17 (1700 ft) |
|                             | Toccoa       | 80302    |          |           |              |
|                             | Brasstown    | 80304    |          |           |              |
|                             | Tallulah     | 80305    |          |           |              |
|                             | Chattooga    | 80306    |          |           |              |
|                             | Cohutta      | 80307    |          |           |              |
|                             | Oconee       | 80308    |          |           |              |
| Cherokee                    | Hiwassee     | 80401    | 35.16    | 84.88     | 22 (2200 ft) |
|                             | Nolichucky   | 80402    |          |           |              |
|                             | Ocoee        | 80403    |          |           |              |
|                             | Tellico      | 80404    |          |           |              |
|                             | Unaka        | 80405    |          |           |              |
|                             | Watuga       | 80406    | 1        |           |              |
| National Forests in Florida | Apalachicola | 80501    | 30.44    | 84.28     | 1 (100 ft)   |
|                             | Lake George  | 80502    |          |           | . ,          |
|                             | Osceola      | 80504    |          |           |              |
|                             | Seminole     | 80505    |          |           |              |
|                             | Wakulla      | 80506    |          |           |              |

| USFS National Forest                 | District             | Location<br>Code | Latitude | Longitude | Elevation    |
|--------------------------------------|----------------------|------------------|----------|-----------|--------------|
| Kisatchie                            | Catahoula            | 80601            | 31.32    | 92.43     | 2 (200 ft)   |
|                                      | Evangeline/Vernon    | 80602            | 002      | 020       | _ (===,      |
|                                      | Kisatchie            | 80603            | 1        |           |              |
|                                      | Winn                 | 80604            |          |           |              |
|                                      | Caney                | 80605            | 1        |           |              |
| National Forests in Mississippi      | Bienville            | 80701            | 33.31    | 89.17     | 3 (300 ft)   |
| Tradicinal Forces in Innocessippi    | Desoto               | 80702            | 33.01    | 00        | 0 (000 1.)   |
|                                      | Homochitto           | 80704            |          |           |              |
|                                      | Chickasawhay         | 80705            |          |           |              |
|                                      | Delta                | 80706            |          |           |              |
|                                      | Holly Springs        | 80707            |          |           |              |
|                                      | Tombigbee            | 80717            |          |           |              |
| George Washington/Jefferson NFs      | Deerfield            | 80801            | 37.27    | 79.94     | 21 (2100 ft) |
| Coorgo Washington, Control Con 141 C | Dry River            | 80802            | 07.27    | 70.01     | 21 (210011)  |
|                                      | James River          | 80803            |          |           |              |
|                                      | Lee                  | 80804            |          |           |              |
|                                      | Pedlar               | 80805            |          |           |              |
|                                      | Warm Springs         | 80806            | 1        |           |              |
|                                      | Blacksburg           | 80811            | 1        |           |              |
|                                      | Clinch               | 80812            | 1        |           |              |
|                                      | Glenwood             | 80813            |          |           |              |
|                                      | Mt. Rogers           | 80814            |          |           |              |
|                                      | New Castle           | 80815            | -        |           |              |
|                                      | Wythe                | 80816            | -        |           |              |
| Ouachita                             | ·                    |                  | 34.50    | 93.06     | 0 (000 ft)   |
| Ouachita                             | Choctaw<br>Caddo     | 80901<br>80902   | 34.50    | 93.06     | 9 (900 ft)   |
|                                      |                      |                  | -        |           |              |
|                                      | Cold Springs Fourche | 80903<br>80904   | -        |           |              |
|                                      | Jessieville          | 80905            | -        |           |              |
|                                      | Kiamichi             |                  | -        |           |              |
|                                      |                      | 80906            | -        |           |              |
|                                      | Mena                 | 80907            | -        |           |              |
|                                      | Oden<br>Poteau       | 80908<br>80909   | -        |           |              |
|                                      |                      |                  | -        |           |              |
|                                      | Womble               | 80910            |          |           |              |
|                                      | Winona               | 80911            |          |           |              |
| Ozork 9 Ct Francia NF-               | Tiak                 | 80912            | 25.00    | 00.40     | 40 (4000 %)  |
| Ozark & St. Francis NFs              | Sylamore             | 81001            | 35.28    | 93.13     | 13 (1300 ft) |
|                                      | Buffalo              | 81002            |          |           |              |
|                                      | Bayou                | 81003            |          |           |              |
|                                      | Pleasant Hill        | 81004            |          |           |              |
|                                      | Boston Mountain      | 81005            |          |           |              |
|                                      | Magazine             | 81006            |          |           |              |
|                                      | St. Francis          | 81007            | 0.5.00   |           |              |
| National Forests in North Carolina   | Cheoah               | 81102            | 35.60    | 82.55     | 25 (2500 ft) |
|                                      | Croatan              | 81103            |          |           |              |
|                                      | Appalachian          | 81104            |          |           |              |
|                                      | Grandfather          | 81105            |          |           |              |
|                                      | Highlands            | 81106            |          |           |              |
|                                      | Pisgah               | 81107            |          |           |              |
|                                      | Tusquitee            | 81109            |          |           |              |
|                                      | Uwharrie             | 81110            |          |           |              |
|                                      | Wayah                | 81111            |          |           |              |
| Francis Marion & Sumter NFs          | Enoree/Tyger         | 81201            | 34.00    | 81.04     | 4 (400 ft)   |
|                                      | Andrew Pickens       | 81202            |          | _         | _            |
|                                      | Long cane            | 81203            |          |           | je 31 of 241 |

| USFS National Forest            | District         | Location<br>Code | Latitude | Longitude | Elevation    |
|---------------------------------|------------------|------------------|----------|-----------|--------------|
|                                 | Wambaw/Witherbee | 81205            |          |           |              |
| National Forests in Texas       | Angelina         | 81301            | 31.34    | 94.73     | 3 (300 ft)   |
|                                 | Davy Crockett    | 81303            |          |           |              |
|                                 | Sam Houston      | 81304            |          |           |              |
|                                 | Sabine           | 81307            |          |           |              |
|                                 | Caddo/LBJ        | 81308            |          |           |              |
| Mark Twain                      | All              | 905              | 37.95    | 91.77     | 10 (1000 ft) |
| Shawnee                         | All              | 908              | 37.74    | 88.54     | 4 (400 ft)   |
| Savannah River Admin            |                  |                  |          |           |              |
| (mapped to 81203)               | All              | 836              | 34.00    | 81.04     | 4 (400 ft)   |
| Savannah River Proclaimed       |                  |                  |          |           |              |
| (mapped to 81203)               | All              | 824              | 34.00    | 81.04     | 4 (400 ft)   |
| Land Between the Lakes Admin    |                  |                  |          |           |              |
| (mapped to 80216)               | All              | 860              | 37.99    | 84.18     | 12 (1200 ft) |
| Land Between the Lakes Admin    |                  |                  |          |           |              |
| (mapped to 80216)               | All              | 835              | 37.99    | 84.18     | 12 (1200 ft) |
| Dept. of Defense, Fort Bragg    |                  |                  |          |           |              |
| Military Reservation (mapped to |                  |                  |          |           |              |
| 81110) <sup>1</sup>             | All              | 701              | 35.60    | 82.55     | 25 (2500 ft) |

### 3.2 Species Codes

The SN variant recognizes 90 species. You may use FVS species alpha codes, Forest Inventory and Analysis (FIA) species codes, or USDA Natural Resources Conservation Service PLANTS symbols<sup>2</sup> to represent these species in FVS input data. Any valid eastern species code identifying species not recognized by the variant will be mapped to the most similar species in the variant. Any non-valid species code will default to the "other species" category.

Either the FVS sequence number or alpha code must be used to specify a species in FVS keywords and Event Monitor functions. FIA codes or PLANTS symbols are only recognized during data input, and may not be used in FVS keywords. Table 3.2.1 shows the complete list of species codes recognized by the SN variant.

**Table 3.2.1** Species codes used in the SN variant.

| FVS    | Alpha |                     | FIA  | PLANTS |                 |
|--------|-------|---------------------|------|--------|-----------------|
| Number | Code  | Common Name         | Code | Symbol | Scientific Name |
| 1      | FR    | fir species         | 010  | ABIES  | Abies sp.       |
| 2      | JU    | redcedar species    | 057  | JUNIP  | Juniperus sp.   |
| 3      | PI    | spruce species      | 090  | PICEA  | Picea sp.       |
| 4      | PU    | sand pine           | 107  | PICL   | Pinus clausa    |
| 5      | SP    | shortleaf pine      | 110  | PIEC2  | Pinus echinata  |
| 6      | SA    | slash pine          | 111  | PIEL   | Pinus elliottii |
| 7      | SR    | spruce pine         | 115  | PIGL2  | Pinus glabra    |
| 8      | L     | longleaf pine       | 121  | PIPA2  | Pinus palustris |
| 9      | TM    | table mountain pine | 123  | PIPU5  | Pinus pungens   |
| 10     | PP    | pitch pine          | 126  | PIRI   | Pinus rigida    |

<sup>1</sup> For some species, users entering a Dept. of Defense, Fort Bragg Military reservation code will use equations not presented in this document.

<sup>&</sup>lt;sup>2</sup> If using USDA PLANTS symbols in input data entered through text files, users must modify the TREEFMT keyword and change the Species descriptor from A3 to A8, or use the database extension.

| FVS      | Alpha |                         | FIA  | PLANTS |                                   |
|----------|-------|-------------------------|------|--------|-----------------------------------|
| Number   | Code  | Common Name             | Code | Symbol | Scientific Name                   |
| 11       | PD    | pond pine               | 128  | PISE   | Pinus serotina                    |
| 12       | WP    | eastern white pine      | 129  | PIST   | Pinus strobus                     |
| 13       | LP    | loblolly pine           | 131  | PITA   | Pinus taeda                       |
| 14       | VP    | Virginia pine           | 132  | PIVI2  | Pinus viginiana                   |
| 15       | BY    | baldcypress             | 221  | TADI2  | Taxodium distichum                |
| 16       | PC    | pondcypress             | 222  | TAAS   | Taxodium ascendens                |
| 17       | HM    | hemlock species         | 260  | TSUGA  | Tsuga sp.                         |
| 18       | FM    | Florida maple           | 311  | ACBA3  | Acer barbatum                     |
| 19       | BE    | boxelder                | 313  | ACNE2  | Acer negundo                      |
| 20       | RM    | red maple               | 316  | ACRU   | Acer rubrum                       |
| 21       | SV    | silver maple            | 317  | ACSA2  | Acer saccharinum                  |
| 22       | SM    | sugar maple             | 318  | ACSA3  | Acer saccharum                    |
|          |       | buckeye, horsechesnut   |      |        |                                   |
| 23       | BU    | species                 | 330  | AESCU  | Aesculus sp.                      |
| 24       | BB    | birch species           | 370  | BETUL  | Betula sp.                        |
| 25       | SB    | sweet birch/black birch | 372  | BELE   | Betula lenta                      |
| 26       | AH    | American hornbeam       | 391  | CACA18 | Carpinus caroliniana              |
| 27       | HI    | hickory species         | 400  | CARYA  | Carya sp.                         |
| 28       | CA    | Catalpa                 | 450  | CATAL  | Catalpa sp.                       |
| 29       | HB    | hackberry species       | 460  | CELTI  | Celtis sp.                        |
| 30       | RD    | eastern redbud          | 471  | CECA4  | Cercis canadensis                 |
| 31       | DW    | flowering dogwood       | 491  | COFL2  | Cornus florida                    |
| 32       | PS    | common persimmon        | 521  | DIVI5  | Diospyros virginiana              |
| 33       | AB    | American beech          | 531  | FAGR   | Fagus grandifolia                 |
| 34       | AS    | ash species             | 540  | FRAXI  | Fraxinus sp.                      |
| 35       | WA    | white ash               | 541  | FRAM2  | Fraxinus americana                |
| 36       | ВА    | black ash               | 543  | FRNI   | Fraxinus nigra                    |
| 37       | GA    | green ash               | 544  | FRPE   | Fraxinus pennsylvanica            |
| 38       | HL    | honeylocust             | 552  | GLTR   | Gleditsia triacanthos             |
| 39       | LB    | loblolly-bay            | 555  | GOLA   | Gordonia lasianthus               |
| 40       | HA    | silverbell              | 580  | HALES  | Halesia sp.                       |
| 41       | HY    | American holly          | 591  | ILOP   | llex opaca                        |
| 42       | BN    | butternut               | 601  | JUCI   | Juglans cinerea                   |
| 43       | WN    | black walnut            | 602  | JUNI   | Juglans nigra                     |
| 44       | SU    | sweetgum                | 611  | LIST2  | Liquidamber styraciflua           |
| 45       | YP    | yellow-poplar           | 621  | LITU   | Liriodendron tulipifera           |
| 46       | MG    | magnolia species        | 650  | MAGNO  | Magnolia sp.                      |
| 47       | CT    | cucumbertree            | 651  | MAAC   | Magnolia acuminata                |
| 48       | MS    | southern magnolia       | 652  | MAGR4  | Magnolia grandiflora              |
| 49       | MV    | sweetbay                | 653  | MAVI2  | Magnolia virginiana               |
| 50       | ML    | bigleaf magnolia        | 654  | MAMA2  | Magnolia macrophylla              |
| 51       | AP    | apple species           | 660  | MALUS  | Malus sp.                         |
| 52       | MB    | mulberry species        | 680  | MORUS  | Morus sp.                         |
| 53       | WT    | water tupelo            | 691  | NYAQ2  | Nyssa aquatica                    |
| 54       | BG    | blackgum, black tupelo  | 693  | NYSY   | Nyssa aquatica<br>Nyssa sylvatica |
| 54<br>55 | TS    |                         | 694  | NYBI   | -                                 |
|          |       | swamp tupelo            |      |        | Nyssa biflora                     |
| 56<br>57 | HH    | eastern hophornbeam,    | 701  | OSVI   | Ostrya virginiana                 |
| 57       | SD    | sourwood                | 711  | OXAR   | Oxydendrum arboreum               |
| 58       | RA    | redbay                  | 721  | PEBO   | Persea borbonia                   |

| FVS<br>Number | Alpha<br>Code | Common Name                 | FIA<br>Code | PLANTS         | Scientific Name                   |
|---------------|---------------|-----------------------------|-------------|----------------|-----------------------------------|
| 59            | SY            |                             | 731         | Symbol<br>PLOC | Platanus occidentalis             |
| 60            | CW            | sycamore cottonwood species | 740         | POPUL          | Populus sp.                       |
| 61            | BT            | bigtooth aspen              | 743         | POGR4          | Populus sp. Populus grandidentata |
| 62            | BC            | black cherry                | 762         | PRSE2          | Prunus serotina                   |
| 63            | WO            | white oak                   | 802         | QUAL           | Quercus alba                      |
| 64            | so            | scarlet oak                 | 1           | QUCO2          | ·                                 |
|               |               |                             | 806         |                | Quercus coccinea                  |
| 65            | SK            | southern red oak            | 812         | QUFA           | Quercus falcata                   |
| 66            | CB            | cherrybark oak              | 813         | QUPA5          | Quercus pagoda                    |
| 67            | TO            | turkey oak                  | 819         | QULA2          | Quercus laevis                    |
| 68            | LK            | laurel oak                  | 820         | QULA3          | Quercus laurifolia                |
| 69            | OV            | overcup oak                 | 822         | QULY           | Quercus lyrata                    |
| 70            | BJ            | blackjack oak               | 824         | QUMA3          | Quercus marilandica               |
| 71            | SN            | swamp chestnut oak          | 825         | QUMI           | Quercus michauxii                 |
| 72            | CK            | chinkapin oak               | 826         | QUMU           | Quercus muehlenbergii             |
| 73            | WK            | water oak                   | 827         | QUNI           | Quercus nigra                     |
| 74            | CO            | chestnut oak                | 832         | QUPR2          | Quercus prinus                    |
| 75            | RO            | northern red oak            | 833         | QURU           | Quercus rubra                     |
| 76            | QS            | Shumard oak                 | 834         | QUSH           | Quercus shumardii                 |
| 77            | PO            | post oak                    | 835         | QUST           | Quercus stellata                  |
| 78            | ВО            | black oak                   | 837         | QUVE           | Quercus velutina                  |
| 79            | LO            | live oak                    | 838         | QUVI           | Quercus virginiana                |
| 80            | BK            | black locust                | 901         | ROPS           | Robinia pseudoacacia              |
| 81            | WI            | willow species              | 920         | SALIX          | Salix sp.                         |
| 82            | SS            | sassafras                   | 931         | SAAL5          | Sassafras albidum                 |
| 83            | BW            | basswood species            | 950         | TILIA          | Tilia sp.                         |
| 84            | EL            | elm species                 | 970         | ULMUS          | Ulmus sp.                         |
| 85            | WE            | winged elm                  | 971         | ULAL           | Ulmus alata                       |
| 86            | AE            | American elm                | 972         | ULAM           | Ulmus americana                   |
| 87            | RL            | slippery elm                | 975         | ULRU           | Ulmus rubra                       |
| 88            | os            | other softwood species      | 298         | 2TE            |                                   |
| 89            | ОН            | other hardwood species      | 998         | 2TD            |                                   |
| 90            | OT            | other species               | 999         | 2TREE          |                                   |

# 3.3 Habitat Type, Plant Association, and Ecological Unit Codes

SN variant users may enter Ecological Unit Codes (EUC) at the Subsection level as a means of distinguishing between major geographic areas within the South (Keys and others 1995). Tree diameter growth models for some species in the SN Variant vary by EUC. A complete list of acceptable EUC codes in the SN variant is shown in Appendix A. If no EUC or an incorrect EUC is entered in the input data, then the default EUC code of 231Dd (Quartzite and Talladega Slate Ridge) is used. Users may enter the plant association code or the plant association FVS sequence number on the STDINFO keyword, when entering stand information from a database, or when using the SETSITE keyword without the PARMS option. If using the PARMS option with the SETSITE keyword, users must use the FVS sequence number for the plant association.

## 3.4 Site Index

Site index is used in the growth equations for the LS variant. Users should always use that site index curves from Carmean and others (1989) to estimate site index as identified in table 3.4.1. In assigning site index, users should use site curves based on total age at an index age of 50. If site index is available, a single site index for the whole stand can be entered, a site index for each individual species in the stand can be entered, or a combination of these can be entered. If site index is missing or incorrect, the site species is set to white oak with a default site index set to 70.

Site indices for species not assigned a site index are converted from the site species site index using transformation equations outlined in Doolittle (1958) for the Southern Appalachian species and USDA Forest Service site index equivalency tables (USDA Forest Service 1992) for the Southern Piedmont and Mountains species. Species are grouped according to similar growth rates into nine site index groups. Determining each species site index is a four-step process. First, the relative site index of the site species is determined using the minimum and maximum site index values identified in table 3.4.1 and equation {3.4.1}. Second, a site index transformation index is computed using equation {3.4.2} for the site species; coefficients are located in table 3.4.2. Third, the relative site index for each of the site index groups is computed using equation {3.4.3}. Fourth, species site indices are computed using the relative site index for their assigned site index group using equation {3.4.4}. All non-valid site species are assigned a site index based on the relative site index of white oak (site group 9).

```
 \begin{split} & \{3.4.1\} \; RSISP = (SI_{site} - SI_{min}) \, / \, (SI_{max} - SI_{min}) \\ & \{3.4.2\} \; MGSPIX = A + B * (RSISP * (SIG_{max} - SIG_{min}) + SIG_{min}) \\ & \{3.4.3\} \; MGRSI = ((c + d * MGSPIX) - SIG_{min}) \, / \, (SIG_{max} - SIG_{min}) \\ & \{3.4.4\} \; SISP = MGRSI * (SI_{max} - SI_{min}) + SI_{min} \end{split}
```

#### where:

RSISP is relative site index of site species

SI<sub>site</sub> is site index of site species

 $SI_{min}$  is site index minimum of species  $SI_{max}$  is site index maximum of species

MGSPIX is site index transformation index for the site species group

SIG<sub>min</sub> is site index minimum of site species group SIG<sub>max</sub> is site index maximum of site species group

A and B are coefficients of the transformation index shown in table 3.4.2

MGRSI is relative site index of each site index group

C and D are coefficients of the site index group shown in table 3.4.2

SISP is species site index

MGRSI is relative site index assigned in table 3.4.2

Table 3.4.1 Site index equations and minimum and maximum site index ranges for the SN variant.

|        | 2100 11 | NC-128: Height Growth                  | wile illum        |                   |
|--------|---------|----------------------------------------|-------------------|-------------------|
| FVS    | Alpha   | Equation (FIA species                  |                   |                   |
| Number | Code    | code/page number)                      | SI <sub>min</sub> | SI <sub>max</sub> |
| 1      | FR      | 012/70                                 | 15                | 100               |
| 2      | JU      | 068/73                                 | 15                | 70                |
| 3      | PI      | 097/88                                 | 15                | 80                |
| 4      | PU      | 107/92                                 | 35                | 100               |
| 5      | SP      | 110/93                                 | 35                | 105               |
| 6      | SA      | 111/99                                 | 35                | 105               |
| 7      | SR      | 097/88                                 | 45                | 90                |
| 8      | LL      | 107/92                                 | 45                | 125               |
| 9      | TM      | 068/73                                 | 35                | 70                |
| 10     | PP      | 132/139                                | 25                | 95                |
| 11     | PD      | 128/117                                | 35                | 105               |
| 12     | WP      | 129/119                                | 40                | 135               |
| 13     | LP      | 131/125                                | 40                | 125               |
| 14     | VP      | 132/139                                | 35                | 95                |
| 15     | BY      | 611/36                                 | 30                | 120               |
| 16     | PC      | 611/36                                 | 30                | 120               |
| 17     | НМ      | 261/142                                | 35                | 90                |
| 18     | FM      | 317/19                                 | 35                | 70                |
| 19     | BE      | 316/16                                 | 35                | 70                |
| 20     | RM      | 316/16                                 | 35                | 85                |
| 21     | SV      | 317/19                                 | 30                | 105               |
| 22     | SM      | 318/18                                 | 35                | 100               |
| 23     | BU      | 318/18                                 | 25                | 90                |
| 24     | BB      | 371/21                                 | 35                | 85                |
| 25     | SB      | 371/21                                 | 35                | 70                |
| 26     | AH      | 068/73                                 | 15                | 40                |
| 27     | HI      | 400/25                                 | 25                | 85                |
| 28     | CA      | 543/29                                 | 30                | 90                |
| 29     | HB      | 068/73                                 | 15                | 90                |
| 30     | RD      | 068/73                                 | 15                | 40                |
| 31     | DW      | 068/73                                 | 15                | 45                |
| 32     | PS      | 068/73                                 | 15                | 70                |
| 33     | AB      | 531/26                                 | 35                | 85                |
| 34     | AS      | 544/30                                 | 35                | 105               |
| 35     | WA      | 541/28                                 | 35                | 95                |
| 36     | BA      | 543/29                                 | 35                | 85                |
| 37     | GA      | 544/30                                 | 35                | 105               |
| 38     | HL      | 901/65                                 | 25                | 120               |
| 39     | LB      | 043/72                                 | 15                | 50                |
| 40     | HA      | 068/73                                 | 15                | 65                |
| 41     | HY      | 531/26                                 | 35                | 70                |
| 42     | BN      | 602/31                                 | 35                | 85                |
| 43     | WN      | 602/31                                 | 35                | 85                |
| 43     | SU      | 611/36                                 | 30                | 125               |
| 45     | YP      | 621/39 (Mountain)                      | 30                | 135               |
| 46     | MG      | 621/39 (Mountain)<br>621/38 (Piedmont) | 35                |                   |
|        |         | \                                      |                   | 125               |
| 47     | CT      | 694/42                                 | 25                | 115               |

| FVS    | Alpha | NC-128: Height Growth<br>Equation (FIA species |                   |                   |
|--------|-------|------------------------------------------------|-------------------|-------------------|
| Number | Code  | code/page number)                              | SI <sub>min</sub> | SI <sub>max</sub> |
| 48     | MS    | 802/52                                         | 35                | 125               |
| 49     | MV    | 694/42                                         | 15                | 75                |
| 50     | ML    | 694/42                                         | 35                | 125               |
| 51     | AP    | 694/42                                         | 15                | 40                |
| 52     | MB    | 068/73                                         | 15                | 55                |
| 53     | WT    | 068/73                                         | 30                | 105               |
| 54     | BG    | 691/41                                         | 35                | 105               |
| 55     | TS    | 694/42                                         | 35                | 95                |
| 56     | HH    | 694/42                                         | 15                | 40                |
| 57     | SD    | 068/73                                         | 15                | 70                |
| 58     | RA    | 068/73                                         | 15                | 60                |
| 59     | SY    | 068/73                                         | 30                | 120               |
| 60     | CW    | 621/39                                         | 40                | 125               |
| 61     | BT    | 742/45                                         | 30                | 90                |
| 62     | ВС    | 743/47                                         | 35                | 105               |
| 63     | WO    | 762/50                                         | 25                | 115               |
| 64     | SO    | Upland Oak/52                                  | 25                | 115               |
| 65     | SK    | Upland Oak/52                                  | 25                | 115               |
| 66     | СВ    | Upland Oak/52                                  | 30                | 125               |
| 67     | TO    | 813/58                                         | 25                | 65                |
| 68     | LK    | 068/73                                         | 25                | 65                |
| 69     | OV    | 068/73                                         | 35                | 95                |
| 70     | BJ    | 828/60                                         | 25                | 65                |
| 71     | SN    | 068/73                                         | 35                | 95                |
| 72     | CK    | 827/59                                         | 35                | 75                |
| 73     | WK    | 802/52                                         | 30                | 115               |
| 74     | СО    | 827/59                                         | 25                | 115               |
| 75     | RO    | Upland Oak/52                                  | 25                | 115               |
| 76     | QS    | Upland Oak/52                                  | 15                | 125               |
| 77     | PO    | 813/58                                         | 25                | 85                |
| 78     | во    | 068/73                                         | 25                | 115               |
| 79     | LO    | Upland Oak/52                                  | 30                | 65                |
| 80     | BK    | 827/59                                         | 25                | 95                |
| 81     | WI    | 901/65                                         | 15                | 110               |
| 82     | SS    | 901/65                                         | 15                | 80                |
| 83     | BW    | 068/73                                         | 35                | 90                |
| 84     | EL    | 951/66                                         | 35                | 90                |
| 85     | WE    | 972/68                                         | 35                | 90                |
| 86     | AE    | 972/68                                         | 35                | 90                |
| 87     | RL    | 972/68                                         | 35                | 90                |
| 88     | OS    | 972/68                                         | 15                | 55                |
| 89     | OH    | 068/73                                         | 15                | 55                |
| 90     | OT    | 068/73                                         | 15                | 55                |

**Table 3.4.2** Site index groups, species mapping and coefficients for site index transformations for the SN variant.

| Site Index<br>Group | Site Index<br>Species | Mapped Species        | Site* | Α       | В      | С  | D     |
|---------------------|-----------------------|-----------------------|-------|---------|--------|----|-------|
| 1                   | SP                    | SP,SA,PD,HM           | М     | -7.1837 | 0.1633 | 44 | 6.13  |
| 1                   | SF.                   | SF,SA,FD,FIIVI        | 0     | -10.000 | 0.2000 | 50 | 5.00  |
|                     |                       |                       | М     | -8.6809 | 0.1702 | 51 | 5.88  |
| 2                   | SO                    | SO,WA,CT,RO,BO        | 0     | -12.000 | 0.2000 | 60 | 5.00  |
|                     |                       |                       | S     | -16.000 | 0.2667 | 60 | 3.75  |
| 3                   | YP                    | BY,PC,SU,SY,QS,YP     | All   | -4.0000 | 0.1000 | 40 | 40.00 |
| 4                   | WP                    | LL,WP,LP              | All   | -9.4118 | 0.1569 | 60 | 6.38  |
| 5                   | VP                    | JU,FR,PI,SR,PU,VP     | All   | -9.3913 | 0.1739 | 54 | 5.75  |
| 6                   | SK                    | AS,BT,SK,RL           | All   | -10.000 | 0.2000 | 50 | 5.00  |
| 7                   | CO                    | CO                    | All   | -8.6809 | 0.1702 | 51 | 5.88  |
| 8                   | PP                    | PP                    | All   | -7.1839 | 0.1633 | 44 | 6.13  |
| 9                   | WO                    | RM,SM,BB,SB,AB,CW,BC, | М     | -8.7442 | 0.1860 | 47 | 5.38  |
| 9                   | VVO                   | WO,CB,OV,SN,WK,BW     | 0     | -10.000 | 0.2000 | 50 | 5.00  |

<sup>\*</sup>M = Mountain, O = Other, S = species 78(BO)

## 3.5 Maximum Density

Maximum stand density index (SDI) and stand basal area are important variables in determining density related mortality. Maximum SDI is also an important variable in determining changes in crown ratio. Maximum SDI is set based on the computed forest cover type from the Forest Inventory & Analysis forest cover typing algorithm (Arner, et al. 2001). The default maximum SDI's by forest cover type in the SN variant are located in table 3.5.1.

**Table 3.5.1** Default Stand Density Index Maximums by forest cover type in the SN variant.

| Forest<br>Cover Type |                                      | SDI     |
|----------------------|--------------------------------------|---------|
| Code                 | Forest Cover Type Name               | Maximum |
| 103                  | Eastern White pine                   | 520     |
| 104                  | White pine/hemlock                   | 535     |
| 105                  | Eastern Hemlock                      | 460     |
| 121                  | Balsam fir                           | 460     |
| 124                  | Red spruce/balsam fir                | 460     |
| 141                  | Longleaf pine                        | 390     |
| 142                  | Slash pine                           | 435     |
| 161                  | Loblolly pine                        | 505     |
| 162                  | Shortleaf pine                       | 505     |
| 163                  | Virginia pine                        | 495     |
| 164                  | Sand pine                            | 365     |
| 165                  | Table-mountain pine                  | 415     |
| 166                  | Pond pine                            | 475     |
| 167                  | Pitch pine                           | 465     |
| 168                  | Spruce pine                          | 350     |
| 181                  | Eastern redcedar                     | 300     |
| 401                  | Eastern white pine/red oak/white ash | 460     |
| 402                  | Eastern redcedar/hardwood            | 300     |
| 403                  | Longleaf pine/oak                    | 360     |
| 404                  | Shortleaf pine/oak                   | 475     |

| Code         Forest Cover Type Name         Maximum           405         Virginia pine/southern red oak         480           406         Loblolly pine/hardwood         475           407         Slash pine/hardwood         555           409         Other pine/hardwood         495           501         Post oak/blackjack oak         380           502         Chestnut oak         380           503         White oak/red oak/hickory         415           504         White oak         430           505         Northern red oak         400           506         Yellow-poplar/white oak/red oak         440           507         Sassafras/persimmon         500           508         Sweetgum/Yellow-poplar         440           510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods                                                                                         | Forest     |                                       |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------|-----|
| 405         Virginia pine/southern red oak         480           406         Loblolly pine/hardwood         475           407         Slash pine/hardwood         555           409         Other pine/hardwood         495           501         Post oak/blackjack oak         380           502         Chestnut oak         380           503         White oak/red oak/hickory         415           504         White oak         430           505         Northern red oak         400           506         Yellow-poplar/white oak/red oak         440           507         Sassafras/persimmon         500           508         Sweetgum/Yellow-poplar         440           510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak                                                                                       | Cover Type | Fanast Carray Trus Name               | SDI |
| 406         Loblolly pine/hardwood         475           407         Slash pine/hardwood         555           409         Other pine/hardwood         495           501         Post oak/blackjack oak         380           502         Chestnut oak         380           503         White oak/red oak/hickory         415           504         White oak         430           505         Northern red oak         400           506         Yellow-poplar/white oak/red oak         440           507         Sassafras/persimmon         500           508         Sweetgum/Yellow-poplar         440           510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         <                                                                                |            | i                                     |     |
| 407         Slash pine/hardwood         555           409         Other pine/hardwood         495           501         Post oak/blackjack oak         380           502         Chestnut oak         380           503         White oak/red oak/hickory         415           504         White oak         430           505         Northern red oak         400           506         Yellow-poplar/white oak/red oak         440           507         Sassafras/persimmon         500           508         Sweetgum/Yellow-poplar         440           510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory                                                                                       |            | ·                                     |     |
| 409         Other pine/hardwood         495           501         Post oak/blackjack oak         380           502         Chestnut oak         380           503         White oak/red oak/hickory         415           504         White oak         430           505         Northern red oak         400           506         Yellow-poplar/white oak/red oak         440           507         Sassafras/persimmon         500           508         Sweetgum/Yellow-poplar         440           510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar                                                                                      |            | · · · · · · · · · · · · · · · · · · · |     |
| 501         Post oak/blackjack oak         380           502         Chestnut oak         380           503         White oak/red oak/hickory         415           504         White oak         430           505         Northern red oak         400           506         Yellow-poplar/white oak/red oak         440           507         Sassafras/persimmon         500           508         Sweetgum/Yellow-poplar         440           510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo                                                                                |            |                                       |     |
| 502         Chestnut oak         380           503         White oak/red oak/hickory         415           504         White oak         430           505         Northern red oak         400           506         Yellow-poplar/white oak/red oak         440           507         Sassafras/persimmon         500           508         Sweetgum/Yellow-poplar         440           510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red m                                                                           |            | •                                     |     |
| 503         White oak/red oak/hickory         415           504         White oak         430           505         Northern red oak         400           506         Yellow-poplar/white oak/red oak         440           507         Sassafras/persimmon         500           508         Sweetgum/Yellow-poplar         440           510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black as                                                                           |            | <u> </u>                              |     |
| 504         White oak         430           505         Northern red oak         400           506         Yellow-poplar/white oak/red oak         440           507         Sassafras/persimmon         500           508         Sweetgum/Yellow-poplar         440           510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         R                                                                           |            |                                       |     |
| 505         Northern red oak         400           506         Yellow-poplar/white oak/red oak         440           507         Sassafras/persimmon         500           508         Sweetgum/Yellow-poplar         440           510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birich/sycamore         420           705                                                                         |            | †                                     |     |
| 506         Yellow-poplar/white oak/red oak         440           507         Sassafras/persimmon         500           508         Sweetgum/Yellow-poplar         440           510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704                                                                                |            |                                       |     |
| 507         Sassafras/persimmon         500           508         Sweetgum/Yellow-poplar         440           510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/Americ                                                                           |            |                                       |     |
| 508         Sweetgum/Yellow-poplar         440           510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           708         Red maple/low                                                                           |            | Yellow-poplar/white oak/red oak       | 440 |
| 510         Scarlet oak         360           511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708                                                                                    | 507        | Sassafras/persimmon                   | 500 |
| 511         Yellow poplar         455           512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/beech/yellow birch         460           802<                                                                  | 508        | Sweetgum/Yellow-poplar                | 440 |
| 512         Black walnut         405           513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460 <t< td=""><td>510</td><td>Scarlet oak</td><td>360</td></t<>               | 510        | Scarlet oak                           | 360 |
| 513         Black locust         295           514         Southern scrub oak         300           515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325 <t< td=""><td>511</td><td>Yellow poplar</td><td>455</td></t<>             | 511        | Yellow poplar                         | 455 |
| 514Southern scrub oak300515Chestnut oak/black oak/scarlet oak420519Red maple/oak475520Mixed upland hardwoods440601Swamp chestnut/cherrybark oak395602Sweetgum-Nuttall-willow oak460605Overcup oak/water hickory425606Atlantic white cedar300607Bald cypress/water tupelo785608Sweetbay/swamp tupelo/red maple625701Black ash/American elm/red maple415702River birch/sycamore420703Cottonwood450704Willow495705Sycamore/pecan/American elm470706Sugarberry(hackberry)/elm/green ash415708Red maple/lowland445801Sugar maple/beech/yellow birch460802Black cherry325803Cherry/ash/yellow-poplar455805Hard maple/basswood485807Elm/ash/locust415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 512        | Black walnut                          | 405 |
| 515         Chestnut oak/black oak/scarlet oak         420           519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485 <t< td=""><td>513</td><td>Black locust</td><td>295</td></t<> | 513        | Black locust                          | 295 |
| 519         Red maple/oak         475           520         Mixed upland hardwoods         440           601         Swamp chestnut/cherrybark oak         395           602         Sweetgum-Nuttall-willow oak         460           605         Overcup oak/water hickory         425           606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                  | 514        | Southern scrub oak                    | 300 |
| 520 Mixed upland hardwoods 601 Swamp chestnut/cherrybark oak 602 Sweetgum-Nuttall-willow oak 605 Overcup oak/water hickory 425 606 Atlantic white cedar 607 Bald cypress/water tupelo 608 Sweetbay/swamp tupelo/red maple 625 701 Black ash/American elm/red maple 702 River birch/sycamore 420 703 Cottonwood 450 704 Willow 495 705 Sycamore/pecan/American elm 706 Sugarberry(hackberry)/elm/green ash 708 Red maple/lowland 801 Sugar maple/beech/yellow birch 802 Black cherry 803 Cherry/ash/yellow-poplar 805 Hard maple/basswood 806 Hard maple/basswood 807 Elm/ash/locust 807 Elm/ash/locust 808 395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 515        | Chestnut oak/black oak/scarlet oak    | 420 |
| 601 Swamp chestnut/cherrybark oak 395 602 Sweetgum-Nuttall-willow oak 460 605 Overcup oak/water hickory 425 606 Atlantic white cedar 300 607 Bald cypress/water tupelo 785 608 Sweetbay/swamp tupelo/red maple 625 701 Black ash/American elm/red maple 415 702 River birch/sycamore 420 703 Cottonwood 450 704 Willow 495 705 Sycamore/pecan/American elm 470 706 Sugarberry(hackberry)/elm/green ash 415 708 Red maple/lowland 445 801 Sugar maple/beech/yellow birch 460 802 Black cherry 325 803 Cherry/ash/yellow-poplar 455 805 Hard maple/basswood 485 807 Elm/ash/locust 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 519        | Red maple/oak                         | 475 |
| 602Sweetgum-Nuttall-willow oak460605Overcup oak/water hickory425606Atlantic white cedar300607Bald cypress/water tupelo785608Sweetbay/swamp tupelo/red maple625701Black ash/American elm/red maple415702River birch/sycamore420703Cottonwood450704Willow495705Sycamore/pecan/American elm470706Sugarberry(hackberry)/elm/green ash415708Red maple/lowland445801Sugar maple/beech/yellow birch460802Black cherry325803Cherry/ash/yellow-poplar455805Hard maple/basswood485807Elm/ash/locust415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 520        | Mixed upland hardwoods                | 440 |
| 602Sweetgum-Nuttall-willow oak460605Overcup oak/water hickory425606Atlantic white cedar300607Bald cypress/water tupelo785608Sweetbay/swamp tupelo/red maple625701Black ash/American elm/red maple415702River birch/sycamore420703Cottonwood450704Willow495705Sycamore/pecan/American elm470706Sugarberry(hackberry)/elm/green ash415708Red maple/lowland445801Sugar maple/beech/yellow birch460802Black cherry325803Cherry/ash/yellow-poplar455805Hard maple/basswood485807Elm/ash/locust415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 601        | Swamp chestnut/cherrybark oak         | 395 |
| 606         Atlantic white cedar         300           607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                     | 602        |                                       | 460 |
| 607         Bald cypress/water tupelo         785           608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                            | 605        | Overcup oak/water hickory             | 425 |
| 608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 606        | Atlantic white cedar                  | 300 |
| 608         Sweetbay/swamp tupelo/red maple         625           701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 607        | Bald cypress/water tupelo             | 785 |
| 701         Black ash/American elm/red maple         415           702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608        |                                       | 625 |
| 702         River birch/sycamore         420           703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 701        | 1 1 1                                 | 415 |
| 703         Cottonwood         450           704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 702        | •                                     | 420 |
| 704         Willow         495           705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 703        | i -                                   | 450 |
| 705         Sycamore/pecan/American elm         470           706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | Willow                                |     |
| 706         Sugarberry(hackberry)/elm/green ash         415           708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Sycamore/pecan/American elm           |     |
| 708         Red maple/lowland         445           801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                       |     |
| 801         Sugar maple/beech/yellow birch         460           802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | , , , ,                               |     |
| 802         Black cherry         325           803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | ,                                     |     |
| 803         Cherry/ash/yellow-poplar         455           805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                       |     |
| 805         Hard maple/basswood         485           807         Elm/ash/locust         415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | -                                     |     |
| 807 Elm/ash/locust 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 809        | Red maple/upland                      | 555 |
| 999 Nonstocked 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | · · · · ·                             |     |

The basal area maximum is set based on the stand SDI maximum set by forest cover type. Equation {3.5.1} is used to set the basal area maximum.

 $\{3.5.1\}$  BAMAX = SDIMAX \*0.5454154 \* SDIU

where:

SDIMAX is the stand SDI maximum

BAMAX is stand basal area maximum

SDIU is the proportion of theoretical maximum density at which the stand reaches actual

maximum density (default 0.85, changed with the SDIMAX keyword)

#### 4.0 GROWTH RELATIONSHIPS

This chapter describes the functional relationships used to fill in missing tree data and calculate incremental growth. In FVS, trees are grown in either the small tree sub-model or the large tree sub-model depending on the diameter.

### 4.1 Height-Diameter Relationships

Height-diameter relationships in FVS are primarily used to estimate tree heights missing in the input data, and occasionally to estimate diameter growth on trees smaller than a given threshold diameter. In the SN variant, the model will dub in heights by one of two methods. By default, the SN variant will use the Curtis-Arney functional form as shown in equation {4.1.1} or equation {4.1.2} (Curtis 1967, Arney 1985). then FVS can switch to a logistic height-diameter equation {4.1.3} (Wykoff, et.al 1982) that may be calibrated to the input data. However, the default in the SN variant is to use equation {4.1.1} or {4.1.2}.

FVS will not automatically use equation {4.1.3} even if you have enough height values in the input data. To override this default, the user must use the NOHTDREG keyword and change field 2 to a 1. Coefficients for the height-diameter equations are given in table 4.1.1.

{4.1.1} Curtis-Arney equation; 
$$DBH > 3.0$$
"  
 $HT = 4.5 + P_2 * e^{(-P_3 * DBH \land P_4)}$ 

{4.1.2} Modified Curtis-Arney equation; 
$$DBH \le 3.0$$
" 
$$HT = ((4.5 + P_2 * e^{(-P_3 * 3 \land P_4)} - 4.51) * (DBH - D_{bw}) / (3 - D_{bw})) + 4.51$$

{4.1.3} Wykoff functional form 
$$HT = 4.5 + e^{(B_1 + B_2/(DBH + 1.0))}$$

where:

HT is tree height

*DBH* is tree diameter at breast height

 $D_{bw}$  is bud width diameter at 4.51 feet shown in Table 4.1.1  $B_1 - B_2$  are species-specific coefficients shown in Table 4.1.1  $P_2 - P_4$  are species-specific coefficients shown in Table 4.1.1

**Table 4.1.1** Default coefficients  $(P_2 - P_4)$ ,  $(B_1 - B_2)$ , and  $D_{bw}$  for the height-diameter relationship equations  $\{4.1.1\}$ ,  $\{4.1.2\}$ , and  $\{4.1.3\}$  in the SN variant.

| FVS    | Alpha | Curtis-Arney Coefficients |            |             | Wykoff Coefficients |                |         |
|--------|-------|---------------------------|------------|-------------|---------------------|----------------|---------|
| Number | Code  | $P_{2}$                   | $P_3$      | $P_4$       | $D_{bw}$            | B <sub>1</sub> | $B_2$   |
| 1      | FR    | 2163.946776               | 6.26880851 | -0.2161439  | 0.1                 | 4.5084         | -6.0116 |
| 2      | JU    | 212.7932729               | 3.47154903 | -0.3258523  | 0.3                 | 4.0374         | -4.2964 |
| 3      | PI    | 2163.946776               | 6.26880851 | -0.2161439  | 0.2                 | 4.5084         | -6.0116 |
| 4      | PU    | 3919.995225               | 6.87312726 | -0.19063343 | 0.5                 | 4.2899         | -4.1019 |
| 5      | SP    | 444.0921666               | 4.11876312 | -0.30617043 | 0.5                 | 4.6271         | -6.4095 |
| 6      | SA    | 1087.101439               | 5.10450596 | -0.24284896 | 0.5                 | 4.6561         | -6.2258 |

| FVS    | Alpha | Cu             | rtis-Arney Coe | fficients   |          | Wykoff C       | oefficients |
|--------|-------|----------------|----------------|-------------|----------|----------------|-------------|
| Number | Code  | P <sub>2</sub> | P <sub>3</sub> | $P_4$       | $D_{bw}$ | B <sub>1</sub> | $B_2$       |
| 7      | SR    | 333.3145742    | 4.13108244     | -0.37092539 | 0.5      | 4.7258         | -6.7703     |
| 8      | LL    | 98.56082813    | 3.89930709     | -0.86730393 | 0.5      | 4.5991         | -5.9111     |
| 9      | TM    | 691.5411919    | 4.19801014     | -0.1856823  | 0.5      | 4.2139         | -4.5419     |
| 10     | PP    | 208.7773185    | 3.72806565     | -0.410875   | 0.5      | 4.3898         | -5.7183     |
| 11     | PD    | 142.7468108    | 3.97260802     | -0.5870983  | 0.5      | 4.5457         | -6.8000     |
| 12     | WP    | 2108.844224    | 5.65948135     | -0.18563136 | 0.4      | 4.6090         | -6.1896     |
| 13     | LP    | 243.860648     | 4.28460566     | -0.47130185 | 0.5      | 4.6897         | -6.8801     |
| 14     | VP    | 926.1802712    | 4.46209203     | -0.20053974 | 0.5      | 4.4718         | -5.0078     |
| 15     | BY    | 119.5749091    | 4.13535453     | -0.79625456 | 0.2      | 4.6171         | -6.2684     |
| 16     | PC    | 162.6505825    | 3.20796415     | -0.47880203 | 0.2      | 4.4603         | -5.0577     |
| 17     | НМ    | 266.4562239    | 3.99313675     | -0.38600287 | 0.1      | 4.5084         | -6.0116     |
| 18     | FM    | 603.6736175    | 3.9896005      | -0.21651785 | 0.2      | 4.3164         | -4.0582     |
| 19     | BE    | 287.9445676    | 3.27674704     | -0.26617485 | 0.2      | 4.2378         | -4.1080     |
| 20     | RM    | 268.5564351    | 3.11432843     | -0.29411156 | 0.2      | 4.3379         | -3.8214     |
| 21     | SV    | 80.51179925    | 26.98331005    | -2.02202808 | 0.2      | 4.5991         | -6.6706     |
| 22     | SM    | 209.8555358    | 2.95281334     | -0.36787496 | 0.2      | 4.4834         | -4.5431     |
| 23     | BU    | 630.9504602    | 4.51086779     | -0.26826208 | 0.3      | 4.5697         | -5.7172     |
| 24     | BB    | 170.5253403    | 2.68833651     | -0.40080716 | 0.1      | 4.4388         | -4.0872     |
| 25     | SB    | 68.92234069    | 43.33832185    | -2.44448482 | 0.1      | 4.4522         | -4.5758     |
| 26     | АН    | 628.0209077    | 3.88103963     | -0.15387585 | 0.2      | 3.8550         | -2.6623     |
| 27     | HI    | 337.6684758    | 3.62726466     | -0.32083172 | 0.3      | 4.5128         | -4.9918     |
| 28     | CA    | 190.9797059    | 3.69278884     | -0.52730469 | 0.3      | 4.9396         | -8.1838     |
| 29     | НВ    | 484.7529797    | 3.93933286     | -0.25998833 | 0.1      | 4.4207         | -5.1435     |
| 30     | RD    | 103.1767713    | 2.21695491     | -0.3596216  | 0.2      | 3.7512         | -2.5539     |
| 31     | DW    | 863.0501053    | 4.38560239     | -0.14812185 | 0.1      | 3.7301         | -2.7758     |
| 32     | PS    | 488.9349192    | 4.06503751     | -0.27180547 | 0.2      | 4.4091         | -4.8464     |
| 33     | AB    | 526.1392688    | 3.89232121     | -0.22587084 | 0.1      | 4.4772         | -4.7206     |
| 34     | AS    | 251.4042514    | 3.26919806     | -0.35905996 | 0.2      | 4.4819         | -4.5314     |
| 35     | WA    | 91.35276617    | 6.99605268     | -1.22937669 | 0.2      | 4.5959         | -6.4497     |
| 36     | BA    | 178.9307637    | 4.92861465     | -0.63777014 | 0.2      | 4.6155         | -6.2945     |
| 37     | GA    | 404.9692122    | 3.39019741     | -0.255096   | 0.2      | 4.6155         | -6.2945     |
| 38     | HL    | 778.9356784    | 4.20756452     | -0.18734197 | 0.1      | 4.3734         | -5.3135     |
| 39     | LB    | 265.7422693    | 3.59041788     | -0.35232417 | 0.2      | 4.4009         | -5.0560     |
| 40     | НА    | 2620.585492    | 5.84993689     | -0.18030935 | 0.2      | 4.4931         | -4.6501     |
| 41     | HY    | 1467.643523    | 5.33438509     | -0.17395792 | 0.1      | 4.0151         | -4.3314     |
| 42     | BN    | 285.8797853    | 3.52138815     | -0.3193688  | 0.3      | 4.5018         | -5.6123     |
| 43     | WN    | 93.71042027    | 3.6575094      | -0.88246833 | 0.4      | 4.5018         | -5.6123     |
| 44     | SU    | 290.90548      | 3.6239536      | -0.3720123  | 0.2      | 4.5920         | -5.1719     |

| FVS    | Alpha | Cu             | rtis-Arney Coe | fficients   |          | Wykoff C       | oefficients |
|--------|-------|----------------|----------------|-------------|----------|----------------|-------------|
| Number | Code  | P <sub>2</sub> | P <sub>3</sub> | $P_4$       | $D_{bw}$ | B <sub>1</sub> | $B_2$       |
| 45     | ΥP    | 625.7696614    | 3.87320571     | -0.23349496 | 0.2      | 4.6892         | -4.9605     |
| 46     | MG    | 585.6609078    | 3.41972033     | -0.17661706 | 0.2      | 4.4004         | -4.7519     |
| 47     | CT    | 660.1996521    | 3.92077102     | -0.21124354 | 0.2      | 4.6067         | -5.2030     |
| 48     | MS    | 139.3315132    | 2.89981329     | -0.48514023 | 0.2      | 4.4004         | -4.7519     |
| 49     | MV    | 184.1931837    | 2.84569124     | -0.36952511 | 0.2      | 4.3609         | -4.1423     |
| 50     | ML    | 366.4744742    | 2.8733336      | -0.1819814  | 0.2      | 4.4004         | -4.7519     |
| 51     | AP    | 574.0200612    | 3.86373895     | -0.16318776 | 0.2      | 3.9678         | -3.2510     |
| 52     | MB    | 750.1823388    | 4.14262749     | -0.15940723 | 0.2      | 3.9613         | -3.1993     |
| 53     | WT    | 163.9728054    | 2.76819717     | -0.44098009 | 0.2      | 4.4330         | -4.5383     |
| 54     | BG    | 319.9788466    | 3.67313408     | -0.30651323 | 0.2      | 4.3802         | -4.7903     |
| 55     | TS    | 252.3566527    | 3.24398683     | -0.33343129 | 0.2      | 4.4334         | -4.5709     |
| 56     | НН    | 109.7324294    | 2.25025802     | -0.41297463 | 0.2      | 4.0322         | -3.0833     |
| 57     | SD    | 690.4917743    | 4.15983216     | -0.18613455 | 0.2      | 4.1352         | -3.7450     |
| 58     | RA    | 257.0532628    | 3.4047448      | -0.30291274 | 0.2      | 4.0965         | -3.9250     |
| 59     | SY    | 644.3567687    | 3.92045786     | -0.21444786 | 0.1      | 4.6355         | -5.2776     |
| 60     | CW    | 190.9797059    | 3.69278884     | -0.52730469 | 0.1      | 4.9396         | -8.1838     |
| 61     | ВТ    | 66.6488871     | 135.4825559    | -2.88622709 | 0.2      | 4.9396         | -8.1838     |
| 62     | ВС    | 364.0247807    | 3.55987361     | -0.27263121 | 0.1      | 4.3286         | -4.0922     |
| 63     | WO    | 170.1330787    | 3.27815866     | -0.48744214 | 0.2      | 4.5463         | -5.2287     |
| 64     | SO    | 196.0564703    | 3.0067167      | -0.38499624 | 0.2      | 4.5225         | -4.9401     |
| 65     | SK    | 150.4300023    | 3.13270999     | -0.49925872 | 0.1      | 4.5142         | -5.2205     |
| 66     | СВ    | 182.6306309    | 3.12897883     | -0.46391125 | 0.1      | 4.7342         | -6.2674     |
| 67     | TO    | 2137.575644    | 5.80907868     | -0.15590506 | 0.2      | 3.9365         | -4.4599     |
| 68     | LK    | 208.2300233    | 3.13834277     | -0.37158262 | 0.1      | 4.4375         | -4.6654     |
| 69     | OV    | 184.0856396    | 3.49535241     | -0.46211544 | 0.2      | 4.5710         | -6.0922     |
| 70     | BJ    | 157.4828626    | 3.38919504     | -0.39151499 | 0.2      | 3.9191         | -4.3503     |
| 71     | SN    | 281.3413276    | 3.51695826     | -0.3336282  | 0.2      | 4.6135         | -5.7613     |
| 72     | CK    | 72.7907469     | 3.67065539     | -1.09878979 | 0.1      | 4.3420         | -5.1193     |
| 73     | WK    | 470.0617193    | 3.78892643     | -0.25123824 | 0.1      | 4.5577         | -4.9595     |
| 74     | CO    | 94.54465221    | 3.42034111     | -0.818759   | 0.2      | 4.4618         | -4.8786     |
| 75     | RO    | 700.0636452    | 4.10607389     | -0.21392785 | 0.2      | 4.5202         | -4.8896     |
| 76     | QS    | 215.0009406    | 3.14204012     | -0.39067352 | 0.1      | 4.6106         | -5.4380     |
| 77     | РО    | 765.2907525    | 4.22375114     | -0.18974706 | 0.1      | 4.2496         | -4.8061     |
| 78     | ВО    | 224.716279     | 3.11648501     | -0.35982064 | 0.2      | 4.4747         | -4.8698     |
| 79     | LO    | 153.9588254    | 3.11348786     | -0.38947124 | 0.2      | 4.2959         | -5.3332     |
| 80     | BK    | 880.2844971    | 4.59642097     | -0.21824277 | 0.1      | 4.4299         | -4.9920     |
| 81     | WI    | 408.2772475    | 3.81808285     | -0.27210505 | 0.1      | 4.4911         | -5.7928     |
| 82     | SS    | 755.1038099    | 4.39496421     | -0.21778831 | 0.1      | 4.3383         | -4.5018     |

| FVS    | Alpha | Cu          | rtis-Arney Coe | ts Wykoff Coefficients |          | oefficients |         |
|--------|-------|-------------|----------------|------------------------|----------|-------------|---------|
| Number | Code  | $P_{2}$     | $P_3$          | $P_4$                  | $D_{bw}$ | B₁          | $B_2$   |
| 83     | BW    | 293.5715132 | 3.52261899     | -0.35122247            | 0.1      | 4.582       | -5.0903 |
| 84     | EL    | 1005.80672  | 4.6473994      | -0.20336143            | 0.1      | 4.3744      | -4.5257 |
| 85     | WE    | 1001.672885 | 4.57310438     | -0.18898217            | 0.1      | 4.5992      | -7.7428 |
| 86     | AE    | 418.5941897 | 3.17038578     | -0.18964025            | 0.1      | 4.6008      | -7.2732 |
| 87     | RL    | 1337.547184 | 4.48953501     | -0.14749529            | 0.1      | 4.6238      | -7.4847 |
| 88     | os    | 212.7932729 | 3.47154903     | -0.3258523             | 0.3      | 4.3898      | -5.7183 |
| 89     | ОН    | 109.7324294 | 2.25025802     | -0.41297463            | 0.2      | 3.9392      | -3.4279 |
| 90     | ОТ    | 31021.35552 | 8.3958757      | -0.10372075            | 0.2      | 3.9089      | -3.0149 |

## 4.2 Bark Ratio Relationships

Bark ratio estimates are used to convert between diameter outside bark and diameter inside bark in various parts of the model. The equation is shown in equation  $\{4.2.1\}$  and coefficients  $(b_1$  and  $b_2)$  for this equation by species are shown in table 4.2.1. Coefficients for the SN variant are based on Clark (1991).

$$\{4.2.1\}\ DIB = b_1 + b_2 * (DOB)$$
  $BRATIO = DIB / DOB$ 

where:

*BRATIO* is species-specific bark ratio (bounded to  $0.80 \le BRATIO \le 0.99$ )

DIB is tree diameter inside bark at breast heightDOB is tree diameter outside bark at breast height

 $b_1, b_2$  are species-specific coefficients shown in table 4.2.1

**Table 4.2.1** Bark ratio coefficients by species for the SN variant.

| FVS    | Alpha |                |         |
|--------|-------|----------------|---------|
| Number | Code  | b <sub>1</sub> | $b_2$   |
| 1      | FR    | 0.05119        | 0.89372 |
| 2      | JU    | -0.27012       | 0.97546 |
| 3      | PI    | -0.17289       | 0.91572 |
| 4      | PU    | -0.39956       | 0.95183 |
| 5      | SP    | -0.44121       | 0.93045 |
| 6      | SA    | -0.55073       | 0.91887 |
| 7      | SR    | -0.13301       | 0.93755 |
| 8      | LL    | -0.45903       | 0.92746 |
| 9      | TM    | 0.05119        | 0.89372 |
| 10     | PP    | -0.58808       | 0.91852 |
| 11     | PD    | -0.51271       | 0.90245 |
| 12     | WP    | -0.31608       | 0.92054 |
| 13     | LP    | -0.48140       | 0.91413 |
| 14     | VP    | -0.31137       | 0.95011 |
| 15     | BY    | -0.27012       | 0.97546 |
| 16     | PC    | -0.94204       | 0.96735 |
| 17     | HM    | -0.04931       | 0.92272 |
| 18     | FM    | -0.09800       | 0.94646 |
| 19     | BE    | -0.09800       | 0.94646 |
| 20     | RM    | -0.09800       | 0.94646 |
| 21     | SV    | -0.09800       | 0.94646 |

| FVS    | Alpha |          |         |
|--------|-------|----------|---------|
| Number | Code  | b₁       | $b_2$   |
| 46     | MG    | -0.21140 | 0.94461 |
| 47     | CT    | -0.21140 | 0.94461 |
| 48     | MS    | -0.21140 | 0.94461 |
| 49     | MV    | -0.17978 | 0.92381 |
| 50     | ML    | -0.21140 | 0.94461 |
| 51     | AP    | -0.33014 | 0.94215 |
| 52     | MB    | -0.33014 | 0.94215 |
| 53     | WT    | -0.38140 | 0.97327 |
| 54     | BG    | 0.19899  | 0.88941 |
| 55     | TS    | -0.15231 | 0.93442 |
| 56     | HH    | -0.42001 | 0.94264 |
| 57     | SD    | -0.25063 | 0.94349 |
| 58     | RA    | -0.33014 | 0.94215 |
| 59     | SY    | -0.09192 | 0.96411 |
| 60     | CW    | -0.25063 | 0.94349 |
| 61     | BT    | -0.25063 | 0.94349 |
| 62     | ВС    | -0.12958 | 0.94152 |
| 63     | WO    | -0.24096 | 0.93789 |
| 64     | SO    | -0.40860 | 0.94613 |
| 65     | SK    | -0.42141 | 0.93008 |
| 66     | СВ    | -0.21801 | 0.93540 |
| ·      |       |          |         |

| FVS    | Alpha |          |         |
|--------|-------|----------|---------|
| Number | Code  | b₁       | $b_2$   |
| 22     | SM    | -0.09800 | 0.94646 |
| 23     | BU    | -0.35332 | 0.95955 |
| 24     | BB    | 0.21790  | 0.92290 |
| 25     | SB    | 0.21790  | 0.92290 |
| 26     | AH    | -0.13040 | 0.97071 |
| 27     | Ξ     | -0.60912 | 0.94347 |
| 28     | CA    | -0.33014 | 0.94215 |
| 29     | HB    | -0.18338 | 0.95768 |
| 30     | RD    | -0.33014 | 0.94215 |
| 31     | DW    | -0.33014 | 0.94215 |
| 32     | PS    | -0.42001 | 0.94264 |
| 33     | AB    | -0.13040 | 0.97071 |
| 34     | AS    | -0.34316 | 0.93964 |
| 35     | WA    | -0.48735 | 0.93847 |
| 36     | BA    | -0.25063 | 0.94349 |
| 37     | GA    | -0.34316 | 0.93964 |
| 38     | HL    | -0.42001 | 0.94264 |
| 39     | LB    | -0.33014 | 0.94215 |
| 40     | HA    | -0.33014 | 0.94215 |
| 41     | HY    | -0.33014 | 0.94215 |
| 42     | BN    | -0.42001 | 0.94264 |
| 43     | WN    | -0.42001 | 0.94264 |
| 44     | SU    | -0.39271 | 0.95997 |
| 45     | YP    | -0.22976 | 0.92408 |

| FVS    | Alpha |          |         |
|--------|-------|----------|---------|
| Number | Code  | b₁       | $b_2$   |
| 67     | TO    | -0.61021 | 0.95803 |
| 68     | LK    | -0.04612 | 0.93127 |
| 69     | OV    | -0.37973 | 0.94380 |
| 70     | BJ    | -0.61021 | 0.95803 |
| 71     | SN    | -0.49699 | 0.94832 |
| 72     | CK    | -0.34225 | 0.93494 |
| 73     | WK    | -0.30330 | 0.95826 |
| 74     | СО    | -0.43197 | 0.92120 |
| 75     | RO    | -0.52266 | 0.95215 |
| 76     | QS    | -0.61021 | 0.95803 |
| 77     | PO    | -0.26493 | 0.91899 |
| 78     | ВО    | -0.70754 | 0.94821 |
| 79     | LO    | -0.70754 | 0.94821 |
| 80     | BK    | -0.37166 | 0.89193 |
| 81     | WI    | -0.25063 | 0.94349 |
| 82     | SS    | -0.25063 | 0.94349 |
| 83     | BW    | -0.35979 | 0.95322 |
| 84     | EL    | -0.42027 | 0.96305 |
| 85     | WE    | -0.42027 | 0.96305 |
| 86     | AE    | -0.42027 | 0.96305 |
| 87     | RL    | -0.42027 | 0.96305 |
| 88     | OS    | -0.38344 | 0.91915 |
| 89     | ОН    | -0.33014 | 0.94215 |
| 90     | OT    | -0.25063 | 0.94349 |

## **4.3 Crown Ratio Relationships**

Crown ratio equations are used for three purposes in FVS: (1) to estimate tree crown ratios missing in input data for both live and dead trees; (2) to estimate change in crown ratio from cycle to cycle for live trees; and (3) to estimate initial crown ratios for regeneration trees established during a simulation.

In the SN variant, crown ratio missing on dead trees in the input data is dubbed using equation set {4.3.1}.

$$\{4.3.1\}$$
  $CR = 0.70 - 0.40/24.0*DBH$  for  $DBH \le 24$ .  
 $CR = 0.30$  for  $DBH > 24$ 

where:

CR is crown ratio expressed as a proportion (bounded to  $0.05 \le CR \le 0.95$ )

*DBH* is tree diameter at breast height

A Weibull-based crown model developed by Dixon (1985) as described in Dixon (2002) is used to predict crown ratio missing for live trees in the input data and for crown ratio change. To estimate crown ratio using this methodology, the average stand crown ratio is estimated from stand density index using one of following five equations  $\{4.3.2\} - \{4.3.6\}$ . Next, Weibull parameters are then estimated from the average stand crown ratio using equations in equation set  $\{4.3.7\}$ . Individual tree crown ratio is then set from the Weibull distribution, equation  $\{4.3.7\}$  based on a tree's relative position in the diameter distribution and multiplied by a scale factor, shown in equation  $\{4.3.9\}$ , which accounts for stand density. Crowns estimated from the Weibull distribution are

bounded to be between the 5 and 95 percentile points of the specified Weibull distribution. Equation reference and coefficients for each species are shown in table 4.3.1.

$$\{4.3.2\}$$
  $ACR = e ^ [d_0 + (d_1 * ln(RELSDI)) + (d_2 * RELSDI))]$   
 $\{4.3.3\}$   $ACR = e ^ [d_0 + (d_1 * ln(RELSDI))]$   
 $\{4.3.4\}$   $ACR = d_0 + (d_2 * RELSDI)$   
 $\{4.3.5\}$   $ACR = d_0 + (d_1 * log_{10}(RELSDI))$   
 $\{4.3.6\}$   $ACR = RELSDI / ((d_0 * RELSDI) + d_1)$ 

{4.3.7} Weibull parameters A, B, and C are estimated from average crown ratio

 $A = a_0$ 

 $B = b_0 + b_1 * ACR$ , bounded to be greater than 3.0

C = c, bounded to be greater than 2.0

$$\{4.3.8\}\ ICR = 1-e^{-((ACR-A)/B)^{\circ}c}$$

$$\{4.3.9\}$$
 SCALE =  $1 - 0.00167 * (CCF - 100)$ 

where:

ACR is the predicted average crown ratio for the species

RELSDI is the relative site density index (Stand SDI / Maximum SDI) and is bounded

between 0.5 and 1.5

A, B, C are parameters of the Weibull crown ratio distribution

*ICR* is crown ratio expressed as a percent

SCALE is a density dependent scaling factor (bounded to  $0.3 \le SCALE \le 1.0$ )

*CCF* is the stand crown competition factor

a<sub>0</sub>, b<sub>0</sub>, b<sub>1</sub>, c<sub>0</sub>, c<sub>1</sub>, d<sub>0</sub>, and d<sub>1</sub> are species-specific coefficients shown in table 4.3.1

**Table 4.3.1** Default coefficients for crown ratio change equations  $\{4.3.1\} - \{4.3.6\}$  in the SN variant.

| FVS    | Alpha | ACR      |         |          |        |        |          |        |        |
|--------|-------|----------|---------|----------|--------|--------|----------|--------|--------|
| Number | Code  | Equation | $d_0$   | $d_1$    | $d_2$  | а      | $b_0$    | b₁     | С      |
| 1      | FR    | 3        | 63.51   |          | -0.09  | 4.0659 | -6.8708  | 1.0510 | 4.1741 |
| 2      | JU    | 3        | 67.64   |          | -2.25  | 2.4435 | -32.4837 | 1.6503 | 2.6518 |
| 3      | PI    | 3        | 63.51   |          | -0.09  | 4.0659 | -6.8708  | 1.0510 | 4.1741 |
| 4      | PU    | 4        | 54.0462 | -18.2118 |        | 4.3780 | -5.0254  | 0.9620 | 2.4758 |
| 5      | SP    | 4        | 47.7297 | -16.352  |        | 4.6721 | -3.9456  | 1.0509 | 3.0228 |
| 6      | SA    | 4        | 42.8255 | -15.0135 |        | 3.8940 | -4.7342  | 0.9786 | 2.9082 |
| 7      | SR    | 2        | 4.17    | -0.23    |        | 5.0000 | -10.1125 | 1.0734 | 3.3218 |
| 8      | LL    | 4        | 42.84   | -5.62    |        | 3.9771 | 14.3941  | 0.5189 | 3.7531 |
| 9      | TM    | 4        | 45.8231 | -13.8999 |        | 3.9190 | 1.2933   | 0.7986 | 2.9202 |
| 10     | PP    | 1        | 4.3546  | -0.5034  | 0.0163 | 3.9190 | 1.2933   | 0.7986 | 2.9202 |
| 11     | PD    | 1        | 3.8904  | -0.3565  | 0.0478 | 4.3300 | -34.2606 | 1.7823 | 3.0554 |
| 12     | WP    | 3        | 51.8    |          | -0.8   | 4.6496 | -11.4277 | 1.1343 | 2.9405 |
| 13     | LP    | 1        | 3.8284  | -0.2234  | 0.0172 | 4.9701 | -14.6680 | 1.3196 | 2.8517 |

Page 46 of 241

| FVS      | Alpha | ACR      |                |                                         |                                         |        |                      |                         |                  |
|----------|-------|----------|----------------|-----------------------------------------|-----------------------------------------|--------|----------------------|-------------------------|------------------|
| Number   | Code  | Equation | d <sub>0</sub> | d <sub>1</sub>                          | $d_2$                                   | а      | b <sub>0</sub>       | b <sub>1</sub>          | С                |
| 14       | VP    | 1        | 4.1136         | -0.331                                  | 0.007                                   | 5.0000 | -10.2832             | 1.1019                  | 2.4693           |
| 15       | BY    | 4        | 48.2413        | -10.1014                                |                                         | 5.0000 | -9.8322              | 1.1062                  | 2.8512           |
| 16       | PC    | 4        | 36.0855        | -5.4737                                 |                                         | 4.9986 | -9.6939              | 1.0740                  | 2.3667           |
| 17       | HM    | 3        | 63.51          |                                         | -0.09                                   | 4.0659 | -6.8708              | 1.0510                  | 4.1741           |
| 18       | FM    | 4        | 53.1867        | -9.4122                                 |                                         | 5.0000 | -18.6340             | 1.2622                  | 3.6407           |
| 19       | BE    | 4        | 61.9643        | -22.3363                                |                                         | 5.0000 | -18.6340             | 1.2622                  | 3.6407           |
| 20       | RM    | 4        | 46.1653        | -6.088                                  |                                         | 4.7322 | -24.2740             | 1.4587                  | 2.9951           |
| 21       | SV    | 3        | 42.98          |                                         | 0.55                                    | 5.0000 | -18.6340             | 1.2622                  | 3.6407           |
| 22       | SM    | 3        | 48.2           |                                         | -0.01                                   | 4.6903 | -19.5613             | 1.2928                  | 3.3715           |
| 23       | BU    | 3        | 42.13          |                                         | -0.1                                    | 5.0000 | -18.6340             | 1.2622                  | 3.6407           |
| 24       | BB    | 1        | 3.7275         | -0.1124                                 | 0.0282                                  | 4.1939 | 1.2500               | 0.8795                  | 3.1500           |
| 25       | SB    | 1        | 3.8785         | -0.1749                                 | 0.0171                                  | 4.1939 | 1.2500               | 0.8795                  | 3.1500           |
| 26       | AH    | 1        | 3.9904         | -0.1496                                 | 0.0171                                  | 4.5640 | 0.9693               | 0.9093                  | 3.0540           |
| 27       | HI    | 1        | 3.9939         | -0.2117                                 | 0.0238                                  | 5.0000 | -29.1096             | 1.5626                  | 3.5310           |
| 28       | CA    | 4        | 48.03          | -13.21                                  |                                         | 4.8371 | -14.3180             | 1.2060                  | 3.7345           |
| 29       | НВ    | 4        | 50.8266        | -14.5261                                |                                         | 4.5671 | -49.1736             | 2.1311                  | 2.9883           |
| 30       | RD    | 4        | 44.5839        | -14.0874                                |                                         | 5.0000 | 15.0407              | 0.6546                  | 3.0344           |
| 31       | DW    | 4        | 51.8467        | -14.1876                                |                                         | 4.7093 | -9.6999              | 1.1020                  | 2.7391           |
| 32       | PS    | 1        | 3.8415         | -0.2879                                 | 0.0297                                  | 4.7093 | -9.6999              | 1.1020                  | 2.7391           |
| 33       | AB    | 4        | 59.09          | -4.99                                   |                                         | 4.6965 | -14.3809             | 1.2016                  | 3.5571           |
| 34       | AS    | 3        | 38.26          |                                         | -0.77                                   | 4.0098 | -12.7054             | 1.2224                  | 2.7400           |
| 35       | WA    | 1        | 3.7881         | -0.0634                                 | -0.0055                                 | 4.8776 | -11.6617             | 1.1668                  | 3.8475           |
| 36       | BA    | 3        | 35.49          |                                         |                                         | 4.0098 | -12.7054             | 1.2224                  | 2.7400           |
| 37       | GA    | 3        | 35.49          |                                         |                                         | 4.5987 | -16.9647             | 1.3925                  | 3.3601           |
| 38       | HL    | 2        | 3.82           | -0.1                                    |                                         | 4.9245 | -13.3135             | 1.2765                  | 2.8455           |
| 39       | LB    | 3        | 37.83          | • • • • • • • • • • • • • • • • • • • • | -0.15                                   | 4.1992 | -16.8789             | 1.2949                  | 2.7697           |
| 40       | HA    | 1        | 4.4653         | -0.834                                  | 0.107                                   | 4.7093 | -9.6999              | 1.1020                  | 2.7391           |
| 41       | HY    | 3        | 52.05          | 0.00                                    | -0.11                                   | 4.6965 | -14.3809             | 1.2016                  | 3.5571           |
| 42       | BN    | 2        | 3.91           | -0.12                                   | • • • • • • • • • • • • • • • • • • • • | 4.2967 | -17.7977             | 1.3186                  | 3.0386           |
| 43       | WN    | 2        | 3.91           | -0.12                                   |                                         | 4.2967 | -17.7977             | 1.3186                  | 3.0386           |
| 44       | SU    | 1        | 3.8153         | -0.0964                                 | 0.0055                                  | 4.6350 | -39.7348             | 1.9132                  | 3.0574           |
| 45       | YP    | 2        | 3.87           | -0.07                                   | 0.0000                                  | 4.9948 | -11.1090             | 1.1089                  | 3.8822           |
| 46       | MG    | 3        | 44.71          | 0.01                                    | 0.4                                     | 5.0000 | 9.2520               | 0.7899                  | 3.2166           |
| 47       | CT    | 3        | 42.15          |                                         | -0.11                                   | 4.9829 | -5.2479              | 0.9552                  | 3.8219           |
| 48       | MS    | 3        | 44.71          |                                         | 0.4                                     | 5.0000 | 9.2520               | 0.7899                  | 3.2166           |
| 49       | MV    | 3        | 36.5           |                                         | -0.23                                   | 4.2299 | -32.4970             | 1.7316                  | 2.7902           |
| 50       | ML    | 3        | 44.71          |                                         | 0.4                                     | 5.0000 | 9.2520               | 0.7899                  | 3.2166           |
| 51       | AP    | 3        | 55.48          |                                         | -2.38                                   | 4.2932 | -7.1512              | 1.0504                  | 2.7738           |
| 52       | MB    | 3        | 42.32          |                                         | -1.08                                   | 4.8677 | -22.5591             | 1.4240                  | 2.8686           |
| 53       | WT    | 3        | 36.02          |                                         | -0.3                                    | 5.0000 | -15.1643             | 1.2524                  | 3.1645           |
| 53<br>   | BG    | 3        | 41.01          |                                         | -0.3                                    | 4.6134 | -42.6970             | 1.9983                  | 3.0081           |
| 55<br>55 | TS    | 3        | 41.379         |                                         | -0.8012                                 | 4.8257 | -7.1092              | 1.0128                  | 2.7232           |
| 55<br>56 | HH    | 4        | 52.7207        | -11.484                                 | -0.0012                                 | 5.0000 | 15.0407              | 0.6546                  | 3.0344           |
| 56<br>57 | SD    | 3        | 38.71          | -11.404                                 | -0.1                                    | 4.8677 | -22.5591             | 1.4240                  | 2.8686           |
| 57<br>58 | RA    | 3        | 38.03          |                                         | -0.1                                    | 3.5122 | 22.2798              | 0.3081                  | 2.7868           |
|          | SY    | 1        | 3.9839         | -0.0462                                 | -0.09                                   | 4.5640 | 1                    | 1.6192                  |                  |
| 59<br>60 | CW    | 4        | 48.03          | -13.21                                  | -0.0240                                 | 4.8371 | -30.7592<br>-14.3180 | 1.2060                  | 3.2836<br>3.7345 |
|          | BT    | 4        | 48.03          |                                         |                                         | 4.8371 | -14.3180             | 1.2060                  |                  |
| 61       |       |          |                | -13.21                                  | 0.06                                    |        |                      |                         | 3.7345           |
| 62       | BC    | 3        | 45.06          |                                         | -0.96                                   | 4.2932 | -7.1512              | 1.0504<br>Page 47 of 24 | 2.7738           |

Page 47 of 241

| FVS    | Alpha | ACR      |                |          |                |        |                |        |        |
|--------|-------|----------|----------------|----------|----------------|--------|----------------|--------|--------|
| Number | Code  | Equation | d <sub>0</sub> | d₁       | d <sub>2</sub> | а      | b <sub>0</sub> | b₁     | С      |
| 63     | WO    | 2        | 4.05           | -0.12    |                | 5.0000 | -16.0927       | 1.2319 | 3.5016 |
| 64     | SO    | 4        | 51.7           | -9.65    |                | 5.0000 | -4.6551        | 0.9593 | 3.8340 |
| 65     | SK    | 2        | 3.92           | -0.09    |                | 5.0000 | -26.7842       | 1.6030 | 3.5160 |
| 66     | СВ    | 1        | 3.9112         | -0.1697  | 0.0147         | 5.0000 | -4.2993        | 1.0761 | 3.5922 |
| 67     | TO    | 2        | 3.95           | -0.02    |                | 4.1406 | 13.6950        | 0.6895 | 3.0427 |
| 68     | LK    | 4        | 54.36          | -11.3181 |                | 4.6329 | -1.2977        | 0.9438 | 3.2263 |
| 69     | OV    | 4        | 57.82          | -18.45   |                | 5.0000 | 11.2401        | 0.7081 | 3.5258 |
| 70     | BJ    | 4        | 56.42          | -14.13   |                | 4.1406 | 13.6950        | 0.6895 | 3.0427 |
| 71     | SN    | 1        | 3.9344         | -0.0845  | 0.0043         | 4.4764 | -18.7445       | 1.3539 | 3.8384 |
| 72     | CK    | 1        | 4.1233         | -0.1279  | -0.0142        | 5.0000 | -7.5332        | 1.0257 | 3.1662 |
| 73     | WK    | 1        | 3.9116         | -0.2657  | 0.0509         | 5.0000 | -50.1177       | 2.1127 | 3.5148 |
| 74     | CO    | 4        | 54.53          | -14.7    |                | 5.0000 | -9.7922        | 1.0728 | 3.6340 |
| 75     | RO    | 2        | 3.9            | -0.07    |                | 5.0000 | -12.4107       | 1.1363 | 3.6430 |
| 76     | QS    | 3        | 46.72          |          | -0.85          | 5.0000 | 5.0414         | 0.8032 | 3.6764 |
| 77     | PO    | 4        | 44.34          | -5.23    |                | 4.7585 | -83.4596       | 3.0817 | 3.4788 |
| 78     | ВО    | 2        | 4.17           | -0.18    |                | 5.0000 | -6.5883        | 1.0266 | 3.5587 |
| 79     | LO    | 3        | 49.27          |          | -0.72          | 5.0000 | 11.2401        | 0.7081 | 3.5258 |
| 80     | BK    | 4        | 49.022         | -22.5732 |                | 3.5643 | -10.5101       | 1.2176 | 2.2033 |
| 81     | WI    | 3        | 44.5295        |          | -1.0053        | 4.8547 | -17.1135       | 1.3108 | 3.2431 |
| 82     | SS    | 3        | 38.85          |          | -0.99          | 4.9082 | -11.2413       | 1.1519 | 2.4971 |
| 83     | BW    | 5        | 0.0283         | -0.012   |                | 4.2656 | -26.6773       | 1.5580 | 4.4024 |
| 84     | EL    | 2        | 3.68           | -0.02    |                | 5.0000 | 1.1421         | 0.9141 | 3.0621 |
| 85     | WE    | 4        | 43.64          | -10.03   |                | 4.9367 | 7.6678         | 0.9105 | 3.0303 |
| 86     | AE    | 1        | 3.7366         | -0.0896  | 0.0151         | 5.0000 | 1.1421         | 0.9141 | 3.0621 |
| 87     | RL    | 1        | 3.8487         | -0.2005  | 0.0276         | 4.7375 | -21.8810       | 1.5340 | 3.3558 |
| 88     | OS    | 3        | 67.64          |          | -2.25          | 2.4435 | -32.4837       | 1.6503 | 2.6518 |
| 89     | ОН    | 1        | 3.78           | -0.02    | -0.02          | 4.1374 | 17.2956        | 0.4987 | 2.2670 |
| 90     | OT    | 2        | 3.93           | -0.15    |                | 4.9041 | -2.5097        | 0.9225 | 2.7628 |

Crown ratio change is estimated at the end of the projection cycle. Since this occurs after diameter growth and mortality are estimated, FVS will already know the stand SDI at the end of the projection cycle. Accordingly, crown ratio at the end of the projection cycle can be estimated using the Weibull distribution and the SDI at the end of the cycle. Crown ratio change is the difference between the crown ratio at the beginning of the cycle and the predicted crown ratio at the end of the cycle. Crown change is checked to make sure it doesn't exceed the change possible if all height growth produces new crown. Crown change is further bounded to 1% per year for the length of the cycle to avoid drastic changes in crown ratio.

#### 4.3.1 Crown Ratio for Newly Established Trees

Crown ratios for newly established trees during regeneration are estimated using equation {4.3.1.1}. A random component is added in equation {4.3.1.1} to ensure that not all newly established trees are assigned exactly the same crown ratio.

 $\{4.3.1.1\}$  CR = 0.89722 - 0.0000461 \* PCCF + RAN

where:

*CR* is crown ratio expressed as a proportion (bounded to 0.2 < CR < 0.9)

*PCCF* is crown competition factor on the inventory point where the tree is established

*RAN* is a small random component

### 4.4 Crown Width Relationships

The SN variant calculates the maximum crown width for each individual tree based on individual tree and stand attributes. Crown width for each tree is reported in the tree list output table and used for percent canopy cover (*PCC*) and crown competition factor (CCF) calculations in the model. When available, forest-grown maximum crown width equations are used to compute *PCC* and open-grown maximum crown width equations are used to compute *CCF*, see equations {4.4.1} through {4.4.5}. Species equation assignment and coefficients are shown in tables 4.4.1 and 4.4.2 for forest- and open-grown equations, respectively. Equations are numbered via the FIA species code and equation number, i.e. the forest grown equation from Bechtold (2003) assigned to fir has the number: 01201.

```
{4.4.1} Bechtold (2003); Equation 01
FCW = a_1 + (a_2 * DBH) + (a_3 * DBH^2) + (a_4 * CR) + (a_5 * HI)
                                                                                   DBH > MinD
FCW = [a_1 + (a_2 * DBH) + (a_3 * DBH^2) + (a_4 * CR) + (a_5 * HI)] * (DBH / MinD)
                                                                                   DBH < MinD
{4.4.2} Bragg (2001); Equation 02
FCW = a_1 + (a_2 * DBH^{a_3})
{4.4.3} Ek (1974); Equation 03
OCW = a_1 + (a_2 * DBH^{a_3})
                                                                                   DBH \ge MinD
OCW = [a_1 + (a_2 * MinD^{a_3})] * (DBH / MinD)
                                                                                   DBH < MinD
{4.4.4} Krajicek and others (1961); Equation 04
OCW = a_1 + (a_2 * DBH)
                                                                                   DBH > MinD
OCW = [a_1 + (a_2 * MinD)] * (DBH / MinD)
                                                                                   DBH < MinD
{4.4.5} Smith and others (1992); Equation 05
OCW = a_1 + (a_2 * DBH * 2.54) + (a_3 * (DBH * 2.54)^2) * 3.28084
                                                                                   DBH > MinD
OCW = [a_1 + (a_2 * MinD * 2.54) + (a_3 * (MinD * 2.54)^2) * 3.28084] * (DBH / MinD)
                                                                                   DBH < MinD
where:
   FCW
               is crown width of forest grown trees (used in PCC calculations)
               is crown width of open-grown trees (used in CCF calculations))
    OCW
   DBH
               is tree diameter at breast height, if bounded
               is crown ratio expressed as a percent
    CR
               is the minimum diameter
   MinD
               is the Hopkins Index
   HI
       HI = (ELEVATION - 887) / 100) * 1.0 + (LATITUDE - 39.54) * 4.0 + (-82.52 - LONGITUDE) * 1.25
               are the coefficients shown in tables 4.4.1 and 4.4.2
   a_1 - a_5
```

**Table 4.4.1.** Crown width equation assignment and coefficients for forest-grown trees in the SN variant.

| FVS<br>Number | Alpha<br>Code | Equation<br>Number | a <sub>1</sub> | <b>a</b> <sub>2</sub> | $a_3$  | <b>a</b> <sub>4</sub> | <b>a</b> <sub>5</sub> | Upper<br>limit of<br>DBH | Max<br>CW      |
|---------------|---------------|--------------------|----------------|-----------------------|--------|-----------------------|-----------------------|--------------------------|----------------|
| 1             | FR            | 01201              | 0.6564         | 0.8403                | uз     | 0.0792                | <b>u</b> 5            | DBII                     | 34             |
| 2             | JU            | 06801              | 1.2359         | 1.2962                |        | 0.0545                |                       |                          | 33             |
| 3             | PI            | 09401              | 0.3789         | 0.8658                |        | 0.0878                |                       |                          | 30             |
| 4             | PU            | 13201              | -0.1211        | 1.2319                |        | 0.1212                |                       |                          | 34             |
| 5             | SP            | 11001              | -2.2564        | 1.3004                |        | 0.1212                | 0.0562                |                          | 34             |
| 6             | SA            | 11101              | -6.9659        | 2.1192                | 0.0333 | 0.0587                | 0.0302                | 30                       | J <del>1</del> |
| 7             | SR            | 11001              | -2.2564        | 1.3004                | 0.0333 | 0.1031                | 0.0562                | 30                       | 34             |
| 8             | LL            | 12101              | -12.2105       | 1.3376                |        | 0.1031                | 0.0302                |                          | 50             |
| 9             | TM            | 12601              | -0.9442        | 1.4531                |        | 0.1237                | 0.2739                |                          | 34             |
| 10            | PP            | 12601              | -0.9442        | 1.4531                |        | 0.0543                | 0.1144                |                          | 34             |
| 11            | PD            | 12801              | -8.7711        | 3.7252                | 0.1063 | 0.0545                | 0.1144                |                          | 34             |
|               | WP            |                    |                |                       | 0.1063 | 0.4000                |                       |                          |                |
| 12            | LP            | 12901              | 0.3914         | 0.9923                |        | 0.1080                |                       |                          | 45             |
| 13            |               | 13101              | -0.8277        | 1.3946                |        | 0.0768                |                       |                          | 55             |
| 14            | VP            | 13201              | -0.1211        | 1.2319                |        | 0.1212                |                       |                          | 34             |
| 15            | BY            | 22101              | -1.0183        | 0.8856                |        | 0.1162                |                       |                          | 37             |
| 16            | PC            | 22101              | -1.0183        | 0.8856                |        | 0.1162                |                       |                          | 37             |
| 17            | HM            | 26101              | 6.1924         | 1.4491                | 0.0178 |                       | 0.0341                | 40                       |                |
| 18            | FM            | 31801              | 4.9399         | 1.0727                |        | 0.1096                | 0.0493                |                          | 54             |
| 19            | BE            | 31301              | 6.4741         | 1.0778                |        | 0.0719                | 0.0637                |                          | 57             |
| 20            | RM            | 31601              | 2.7563         | 1.4212                | 0.0143 | 0.0993                |                       | 50                       |                |
| 21            | SV            | 31701              | 3.3576         | 1.1312                |        | 0.1011                | 0.1730                |                          | 45             |
| 22            | SM            | 31801              | 4.9399         | 1.0727                |        | 0.1096                | 0.0493                |                          | 54             |
| 23            | BU            | 40701              | 4.5453         | 1.3721                |        | 0.0430                |                       |                          | 54             |
| 24            | BB            | 37301              | 11.6634        | 1.0028                |        |                       |                       |                          | 68             |
| 25            | SB            | 37201              | 4.6725         | 1.2968                |        | 0.0787                |                       |                          | 54             |
| 26            | AH            | 39101              | 0.9219         | 1.6303                |        | 0.1150                | 0.1113                |                          | 42             |
| 27            | Η             | 40701              | 4.5453         | 1.3721                |        | 0.0430                |                       |                          | 54             |
| 28            | CA            | 93101              | 4.6311         | 1.0108                |        | 0.0564                |                       |                          | 29             |
| 29            | HB            | 46201              | 7.1043         | 1.3041                |        | 0.0456                |                       |                          | 51             |
| 30            | RD            | 49101              | 2.9646         | 1.9917                |        | 0.0707                |                       |                          | 36             |
| 31            | DW            | 49101              | 2.9646         | 1.9917                |        | 0.0707                |                       |                          | 36             |
| 32            | PS            | 52101              | 3.5393         | 1.3939                |        | 0.0625                |                       |                          | 36             |
| 33            | AB            | 53101              | 3.9361         | 1.1500                |        | 0.1237                | 0.0691                |                          | 80             |
| 34            | AS            | 54401              | 2.9672         | 1.3066                |        | 0.0585                |                       |                          | 61             |
| 35            | WA            | 54101              | 1.7625         | 1.3413                |        | 0.0957                |                       |                          | 62             |
| 36            | BA            | 54301              | 5.2824         | 1.1184                |        |                       |                       |                          | 34             |
| 37            | GA            | 54401              | 2.9672         | 1.3066                |        | 0.0585                |                       |                          | 61             |
| 38            | HL            | 55201              | 4.1971         | 1.5567                |        | 0.0880                |                       |                          | 46             |
| 39            | LB            | 65301              | 8.2119         | 0.9708                |        |                       |                       |                          | 41             |
| 40            | HA            | 49101              | 2.9646         | 1.9917                |        | 0.0707                |                       |                          | 36             |
| 41            | HY            | 59101              | 4.5803         | 1.0747                |        | 0.0661                |                       |                          | 31             |
| 42            | BN            | 60201              | 3.6031         | 1.1472                |        | 0.1224                |                       |                          | 37             |
| 43            | WN            | 60201              | 3.6031         | 1.1472                |        | 0.1224                |                       |                          | 37             |
| 44            | SU            | 61101              | 1.8853         | 1.1625                |        | 0.0656                |                       |                          | 50             |
| 45            | YP            | 62101              | 3.3543         | 1.1627                |        | 0.0857                |                       |                          | 61             |
| 46            | MG            | 65301              | 8.2119         | 0.9708                |        | 0.000.                |                       |                          | 41             |
| 47            | CT            | 65101              | 4.1711         | 1.6275                |        |                       |                       |                          | 39             |
| 48            | MS            | 65301              | 8.2119         | 0.9708                |        |                       |                       |                          | 41             |
| 49            | MV            | 65301              | 8.2119         | 0.9708                |        |                       |                       |                          | 41             |
| 50            | ML            | 65301              | 8.2119         | 0.9708                |        |                       |                       |                          | 41             |
| 51            | AP            | 76102              | 4.102718       | 1.396006              |        |                       |                       |                          | 52             |

| FVS<br>Number | Alpha<br>Code | Equation<br>Number | 2                                | $a_2$  | 2                     |                | 2              | Upper<br>limit of<br>DBH | Max<br>CW |
|---------------|---------------|--------------------|----------------------------------|--------|-----------------------|----------------|----------------|--------------------------|-----------|
| 52            | MB            | 68201              | <b>a</b> <sub>1</sub><br>13.3255 | 1.0735 | <b>a</b> <sub>3</sub> | a <sub>4</sub> | a <sub>5</sub> | ווטט                     | 46        |
| 53            | WT            | 69101              | 5.3409                           | 0.7499 |                       | 0.1047         |                |                          | 37        |
| 54            | BG            | 69301              | 5.5037                           | 1.0567 |                       | 0.0880         | 0.0610         |                          | 50        |
| 55            | TS            | 69401              | 1.3564                           | 1.0991 |                       | 0.1243         | 0.0010         |                          | 41        |
| 56            | HH            | 70101              | 7.8084                           | 0.8129 |                       | 0.0941         | 0.0817         |                          | 39        |
| 57            | SD            | 71101              | 7.975                            | 0.8303 |                       | 0.0423         | 0.0706         |                          | 36        |
| 58            | RA            | 72101              | 4.2756                           | 1.0773 |                       | 0.1526         | 0.1650         |                          | 25        |
| 59            | SY            | 73101              | -1.3973                          | 1.3756 |                       | 0.1835         | 0.1000         |                          | 66        |
| 60            | CW            | 74201              | 3.4375                           | 1.4092 |                       | 0.1000         |                |                          | 80        |
| 61            | BT            | 74301              | 0.6847                           | 1.1050 |                       | 0.1420         | 0.0265         |                          | 43        |
| 62            | BC            | 76201              | 3.0237                           | 1.1119 |                       | 0.1112         | 0.0493         |                          | 52        |
| 63            | WO            | 80201              | 3.2375                           | 1.5234 |                       | 0.0455         | 0.0324         |                          | 69        |
| 64            | SO            | 80601              | 0.5656                           | 1.6766 |                       | 0.0739         | 0.002.         |                          | 66        |
| 65            | SK            | 81201              | 2.1517                           | 1.6064 |                       | 0.0609         |                |                          | 56        |
| 66            | СВ            | 81201              | 2.1517                           | 1.6064 |                       | 0.0609         |                |                          | 56        |
| 67            | TO            | 81901              | 5.8858                           | 1.4935 |                       | 0.000          |                |                          | 29        |
| 68            | LK            | 82001              | 6.3149                           | 1.6455 |                       |                |                |                          | 54        |
| 69            | OV            | 82301              | 1.7827                           | 1.6549 |                       | 0.0343         |                |                          | 61        |
| 70            | BJ            | 82401              | 0.5443                           | 1.4882 |                       | 0.0565         |                |                          | 37        |
| 71            | SN            | 83201              | 2.148                            | 1.6928 | 0.0176                | 0.0569         |                | 50                       |           |
| 72            | CK            | 82601              | 0.5189                           | 1.4134 | 010110                | 0.1365         | 0.0806         |                          | 45        |
| 73            | WK            | 82701              | 1.6349                           | 1.5443 |                       | 0.0637         | 0.0764         |                          | 57        |
| 74            | CO            | 83201              | 2.148                            | 1.6928 | 0.0176                | 0.0569         |                | 50                       |           |
| 75            | RO            | 83301              | 2.8908                           | 1.4077 |                       | 0.0643         |                |                          | 82        |
| 76            | QS            | 81201              | 2.1517                           | 1.6064 |                       | 0.0609         |                |                          | 56        |
| 77            | PO            | 83501              | 1.6125                           | 1.6669 |                       | 0.0536         |                |                          | 45        |
| 78            | ВО            | 83701              | 2.8974                           | 1.3697 |                       | 0.0671         |                |                          | 52        |
| 79            | LO            | 83801              | 5.6694                           | 1.6402 |                       |                |                |                          | 66        |
| 80            | BK            | 90101              | 3.0012                           | 0.8165 |                       | 0.1395         |                |                          | 48        |
| 81            | WI            | 97201              | 1.7296                           | 2.0732 |                       | 0.0590         | 0.0869         |                          | 50        |
| 82            | SS            | 93101              | 4.6311                           | 1.0108 |                       | 0.0564         |                |                          | 29        |
| 83            | BW            | 95101              | 1.6871                           | 1.2110 |                       | 0.1194         | 0.0264         |                          | 61        |
| 84            | EL            | 97201              | 1.7296                           | 2.0732 |                       | 0.0590         | 0.0869         |                          | 50        |
| 85            | WE            | 97101              | 4.3649                           | 1.6612 |                       | 0.0643         |                |                          | 40        |
| 86            | AE            | 97201              | 1.7296                           | 2.0732 |                       | 0.0590         | 0.0869         |                          | 50        |
| 87            | RL            | 97501              | 9.0023                           | 1.3933 |                       |                | 0.0785         |                          | 49        |
| 88            | OS            | 06801              | 1.2359                           | 1.2962 |                       | 0.0545         |                |                          | 33        |
| 89            | OH            | 93101              | 4.6311                           | 1.0108 |                       | 0.0564         |                |                          | 29        |
| 90            | OT            | 31601              | 2.7563                           | 1.4212 | 0.0143                | 0.0993         |                | 50                       |           |

**Table 4.4.2.** Crown width equation assignment and coefficients for open-grown trees for the SN variant.

| FVS    | Alpha | Equation       |                |                |                       |                |                | Upper limit of   |        |
|--------|-------|----------------|----------------|----------------|-----------------------|----------------|----------------|------------------|--------|
| Number | Code  | Number         | a <sub>1</sub> | a <sub>2</sub> | <b>a</b> <sub>3</sub> | a <sub>4</sub> | $\mathbf{a}_5$ | DBH <sup>3</sup> | Max CW |
| 1      | FR    | 01203          | 0.3270         | 5.1160         |                       |                |                |                  | 34     |
| 2      | JU    | 06801          | 1.2359         | 1.2962         |                       | 0.0545         |                |                  | 33     |
| 3      | PI    | 09403          | 3.5940         | 1.9630         |                       |                |                |                  | 37     |
| 4      | PU    | 13201          | -0.1211        | 1.2319         |                       | 0.1212         |                |                  | 34     |
| 5      | SP    | 11005          | 0.5830         | 0.2450         | 0.0009                |                |                |                  | 45     |
| 6      | SA    | 11101          | -6.9659        | 2.1192         | 0.0333                | 0.0587         | 0.0959         | 30               |        |
| 7      | SR    | 11005          | 0.5830         | 0.2450         | 0.0009                |                |                |                  | 45     |
| 8      | LL    | 12105          | 0.1130         | 0.2590         |                       |                |                |                  | 50     |
| 9      | TM    | 12601          | -0.9442        | 1.4531         |                       | 0.0543         | 0.1144         |                  | 34     |
| 10     | PP    | 12601          | -0.9442        | 1.4531         |                       | 0.0543         | 0.1144         |                  | 34     |
| 11     | PD    | 12801          | -8.7711        | 3.7252         | 0.1063                |                |                |                  | 34     |
| 12     | WP    | 12903          | 1.6200         | 3.1970         |                       |                |                |                  | 58     |
| 13     | LP    | 13105          | 0.7380         | 0.2450         | 0.0008                |                |                |                  | 66     |
| 14     | VP    | 13201          | -0.1211        | 1.2319         |                       | 0.1212         |                |                  | 34     |
| 15     | BY    | 22101          | -1.0183        | 0.8856         |                       | 0.1162         |                |                  | 37     |
| 16     | PC    | 22101          | -1.0183        | 0.8856         |                       | 0.1162         |                |                  | 37     |
| 17     | НМ    | 26101          | 6.1924         | 1.4491         | 0.0178                |                | 0.0341         | 40               |        |
| 18     | FM    | 31803          | 0.8680         | 4.1500         |                       |                |                |                  | 54     |
| 19     | BE    | 31301          | 6.4741         | 1.0778         |                       | 0.0719         | 0.0637         |                  | 57     |
| 20     | RM    | 31603          | 0.0000         | 4.7760         |                       |                |                |                  | 55     |
| 21     | SV    | 31701          | 3.3576         | 1.1312         |                       | 0.1011         | 0.1730         |                  | 45     |
| 22     | SM    | 31803          | 0.8680         | 4.1500         |                       | 511511         | 011100         |                  | 54     |
| 23     | BU    | 40703          | 2.3600         | 3.5480         |                       |                |                |                  | 54     |
| 24     | BB    | 37301          | 11.6634        | 1.0028         |                       |                |                |                  | 68     |
| 25     | SB    | 37201          | 4.6725         | 1.2968         |                       | 0.0787         |                |                  | 54     |
| 26     | AH    | 39101          | 0.9219         | 1.6303         |                       | 0.1150         | 0.1113         |                  | 42     |
| 27     | HI    | 40703          | 2.3600         | 3.5480         |                       | 0.1100         | 0.1110         |                  | 54     |
| 28     | CA    | 93101          | 4.6311         | 1.0108         |                       | 0.0564         |                |                  | 29     |
| 29     | HB    | 46201          | 7.1043         | 1.3041         |                       | 0.0304         |                |                  | 51     |
| 30     | RD    | 49101          | 2.9646         | 1.9917         |                       | 0.0707         |                |                  | 36     |
| 31     | DW    | 49101          | 2.9646         | 1.9917         |                       | 0.0707         |                |                  | 36     |
| 32     | PS    | 52101          | 3.5393         | 1.3939         |                       | 0.0707         |                |                  | 36     |
| 33     | AB    |                |                |                |                       |                | 0.0604         |                  | 80     |
| 33     | AS    | 53101<br>54403 | 3.9361         | 1.1500         |                       | 0.1237         | 0.0691         |                  | 61     |
|        |       |                | 0.0000         | 4.7550         |                       | 0.0057         |                |                  |        |
| 35     | WA    | 54101          | 1.7625         | 1.3413         |                       | 0.0957         |                |                  | 62     |
| 36     | BA    | 54301          | 5.2824         | 1.1184         |                       |                |                |                  | 34     |
| 37     | GA    | 54403          | 0.0000         | 4.7550         |                       | 0.0000         |                |                  | 61     |
| 38     | HL    | 55201          | 4.1971         | 1.5567         |                       | 0.0880         |                |                  | 46     |
| 39     | LB    | 65301          | 8.2119         | 0.9708         |                       | 0.0707         |                |                  | 41     |
| 40     | HA    | 49101          | 2.9646         | 1.9917         |                       | 0.0707         |                |                  | 36     |
| 41     | HY    | 59101          | 4.5803         | 1.0747         |                       | 0.0661         |                |                  | 31     |
| 42     | BN    | 60201          | 3.6031         | 1.1472         |                       | 0.1224         |                |                  | 37     |
| 43     | WN    | 60201          | 3.6031         | 1.1472         |                       | 0.1224         |                |                  | 37     |
| 44     | SU    | 61101          | 1.8853         | 1.1625         |                       | 0.0656         | 0.0300         |                  | 50     |
| 45     | YP    | 62101          | 3.3543         | 1.1627         |                       | 0.0857         |                |                  | 61     |
| 46     | MG    | 65301          | 8.2119         | 0.9708         |                       |                |                |                  | 41     |
| 47     | CT    | 65101          | 4.1711         | 1.6275         |                       |                |                |                  | 39     |
| 48     | MS    | 65301          | 8.2119         | 0.9708         |                       |                |                |                  | 41     |

<sup>&</sup>lt;sup>3</sup> Maximum crown widths and DBH have been assigned to prevent poor behavior beyond the source data. In addition, *CR* has been set to 90% for species using equation 01, Bechtold (2003).

| FVS<br>Number | Alpha<br>Code | Equation<br>Number | 3.      | <b>a</b> .                      | 2                     | 2.             | 2-                    | Upper limit of DBH <sup>3</sup> | Max CW |
|---------------|---------------|--------------------|---------|---------------------------------|-----------------------|----------------|-----------------------|---------------------------------|--------|
| 49            | MV            | 65301              | 8.2119  | <b>a</b> <sub>2</sub><br>0.9708 | <b>a</b> <sub>3</sub> | a <sub>4</sub> | <b>a</b> <sub>5</sub> | וטטו                            | 41     |
| 50            | ML            | 65301              | 8.2119  | 0.9708                          |                       |                |                       |                                 | 41     |
| 51            | AP            | 76102              | 4.1027  | 1.3960                          |                       |                |                       |                                 | 52     |
| 52            | MB            | 68201              | 13.3255 | 1.0735                          |                       |                |                       |                                 | 46     |
| 53            | WT            | 69101              | 5.3409  | 0.7499                          |                       | 0.1047         |                       |                                 | 37     |
| 54            | BG            | 69301              | 5.5037  | 1.0567                          |                       | 0.0880         | 0.0610                |                                 | 50     |
| 55            | TS            | 69401              | 1.3564  | 1.0991                          |                       | 0.1243         | 0.0010                |                                 | 41     |
| 56            | HH            | 70101              | 7.8084  | 0.8129                          |                       | 0.0941         | 0.0817                |                                 | 39     |
| 57            | SD            | 71101              | 7.9750  | 0.8303                          |                       | 0.0423         | 0.0706                |                                 | 36     |
| 58            | RA            | 72101              | 4.2756  | 1.0773                          |                       | 0.1526         | 0.1650                |                                 | 25     |
| 59            | SY            | 73101              | -1.3973 | 1.3756                          |                       | 0.1835         | 0.1000                |                                 | 66     |
| 60            | CW            | 74203              | 2.9340  | 1.0700                          |                       | 0.1000         |                       |                                 | 80     |
| 61            | BT            | 74301              | 0.6847  | 1.1050                          |                       | 0.1420         | 0.0265                |                                 | 43     |
| 62            | BC            | 76203              | 0.6210  | 7.0590                          |                       | 011120         | 0.0200                |                                 | 52     |
| 63            | WO            | 80204              | 1.8000  | 1.8830                          |                       |                |                       |                                 | 69     |
| 64            | SO            | 80601              | 0.5656  | 1.6766                          |                       | 0.0739         |                       |                                 | 66     |
| 65            | SK            | 81201              | 2.1517  | 1.6064                          |                       | 0.0609         |                       |                                 | 56     |
| 66            | СВ            | 81201              | 2.1517  | 1.6064                          |                       | 0.0609         |                       |                                 | 56     |
| 67            | TO            | 81901              | 5.8858  | 1.4935                          |                       | 0.0000         |                       |                                 | 29     |
| 68            | LK            | 82001              | 6.3149  | 1.6455                          |                       |                |                       |                                 | 54     |
| 69            | OV            | 82303              | 0.9420  | 3.5390                          |                       |                |                       |                                 | 78     |
| 70            | BJ            | 82401              | 0.5443  | 1.4882                          |                       | 0.0565         |                       |                                 | 37     |
| 71            | SN            | 83201              | 2.1480  | 1.6928                          | 0.0176                | 0.0569         |                       | 50                              | -      |
| 72            | CK            | 82601              | 0.5189  | 1.4134                          |                       | 0.1365         | 0.0806                |                                 | 45     |
| 73            | WK            | 82701              | 1.6349  | 1.5443                          |                       | 0.0637         | 0.0764                |                                 | 57     |
| 74            | CO            | 83201              | 2.1480  | 1.6928                          | 0.0176                | 0.0569         |                       | 50                              |        |
| 75            | RO            | 83303              | 2.8500  | 3.7820                          |                       |                |                       |                                 | 82     |
| 76            | QS            | 81201              | 2.1517  | 1.6064                          |                       | 0.0609         |                       |                                 | 56     |
| 77            | PO            | 83501              | 1.6125  | 1.6669                          |                       | 0.0536         |                       |                                 | 45     |
| 78            | ВО            | 83704              | 4.5100  | 1.6700                          |                       |                |                       |                                 | 52     |
| 79            | LO            | 83801              | 5.6694  | 1.6402                          |                       |                |                       |                                 | 66     |
| 80            | BK            | 90101              | 3.0012  | 0.8165                          |                       | 0.1395         |                       |                                 | 48     |
| 81            | WI            | 97203              | 2.8290  | 3.4560                          |                       |                |                       |                                 | 72     |
| 82            | SS            | 93101              | 4.6311  | 1.0108                          |                       | 0.0564         |                       |                                 | 29     |
| 83            | BW            | 95101              | 1.6871  | 1.2110                          |                       | 0.1194         | 0.0264                |                                 | 61     |
| 84            | EL            | 97203              | 2.8290  | 3.4560                          |                       |                |                       |                                 | 72     |
| 85            | WE            | 97101              | 4.3649  | 1.6612                          |                       | 0.0643         |                       |                                 | 40     |
| 86            | AE            | 97203              | 2.8290  | 3.4560                          |                       |                |                       |                                 | 72     |
| 87            | RL            | 97501              | 9.0023  | 1.3933                          |                       |                | 0.0785                |                                 | 49     |
| 88            | OS            | 06801              | 1.2359  | 1.2962                          |                       | 0.0545         |                       |                                 | 33     |
| 89            | OH            | 93101              | 4.6311  | 1.0108                          |                       | 0.0564         |                       |                                 | 29     |
| 90            | OT            | 31603              | 0.0000  | 4.7760                          |                       |                |                       |                                 | 55     |

# **4.5 Crown Competition Factor**

The SN variant uses crown competition factor (CCF) as a predictor variable in some growth relationships. Crown competition factor (Krajicek and others 1961) is a relative measurement of stand density that is based on tree diameters. Individual tree  $CCF_t$  values estimate the percentage of an acre that would be covered by the tree's crown if the tree were open-grown. Stand CCF is the summation of individual tree ( $CCF_t$ ) values. A stand CCF value of 100 theoretically indicates that tree crowns will just touch in an unthinned, evenly spaced stand. Crown competition factor for an

individual tree is calculated using equations {4.5.1} and {4.5.2 and is based off of open-grown crown width equations.

$$\{4.5.1\}\ CCF_t = 0.001803 * OCW^2 \qquad DBH \ge 1.0$$
"

$$\{4.5.2\}\ CCF_t = 0.001$$
  $DBH < 0.1$ "

where:

 $CCF_t$  is crown competition factor for an individual tree  $OCW_t$  is open-grown crown width for an individual tree

*DBH* is tree diameter at breast height

### **4.6 Small Tree Growth Relationships**

Trees are considered "small trees" for FVS modeling purposes when they are smaller than some threshold diameter. This threshold diameter is set to 3.0" for all species in the SN variant.

The small tree model is height growth driven, meaning height growth is estimated first and diameter growth is estimated from height growth. These relationships are discussed in the following sections.

#### 4.6.1 Small Tree Height Growth

The small-tree height growth model predicts periodic potential height growth (POTHTG) from height growth curves using the Chapman-Richards nonlinear functional form for a particular species, see GTR-NC-128 (Carmean and others 1989). A linear function fills in the height growth curves from 0 at age 0 to the lower end of the height growth curve. Height growth is computed by subtracting the current predicted height from the predicted height 5 years in the future, as depicted in equation {4.6.1.1}. Coefficients for each species are located in table 4.6.1.1.

$$\{4.6.1.1\} \; \textit{POTHT} = c_1 * \; SI^{c_2} * \; [1.0 - e^{\; (c_3 * \textit{AGET})}]^{(c_4 * \; (SI \land c_5))}$$

where:

*POTHT* is predicted tree height, used for current and future height growth.

SI is species site index

AGET is tree age

 $AGET = (1 / c_3) * ln[1 - (HT / (c_1 * SI^{c_2}))]^{((1 / c_4) * (SI^{c_5}))}$ 

 $c_1 - c_5$  are species-specific coefficients

**Table 4.6.1.1** Height growth curve coefficients from GTR-NC-128 (Carmean and others 1989) for the SN variant.

| FVS    |            | NC-128 Height Growth Equation (FIA code / |                |                |                |                |                       |
|--------|------------|-------------------------------------------|----------------|----------------|----------------|----------------|-----------------------|
| Number | Alpha Code | page number)                              | C <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | <b>C</b> <sub>5</sub> |
| 1      | FR         | 012/70                                    | 2.077          | 0.9303         | -0.0285        | 2.8937         | -0.1414               |
| 2      | JU         | 068/73                                    | 0.9276         | 1.0591         | -0.0424        | 0.3529         | 0.3114                |
| 3      | PI         | 097/88                                    | 1.3307         | 1.0442         | -0.0496        | 3.5829         | 0.0945                |
| 4      | PU         | 107/92                                    | 1.266          | 1.0034         | -0.0365        | 1.5515         | -0.0221               |
| 5      | SP         | 110/93                                    | 1.4232         | 0.9989         | -0.0285        | 1.2156         | 0.0088                |
| 6      | SA         | 111/99                                    | 1.1557         | 1.0031         | -0.0408        | 0.9807         | 0.0314                |
| 7      | SR         | 097/88                                    | 1.3307         | 1.0442         | -0.0496        | 3.5829         | 0.0945                |

| FVS    |            | NC-128 Height Growth<br>Equation (FIA code / |                       |                |                |                |                |
|--------|------------|----------------------------------------------|-----------------------|----------------|----------------|----------------|----------------|
| Number | Alpha Code | page number)                                 | <b>C</b> <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> |
| 8      | LL         | 107/92                                       | 1.421                 | 0.9947         | -0.0269        | 1.1344         | -0.0109        |
| 9      | TM         | 068/73                                       | 0.9276                | 1.0591         | -0.0424        | 0.3529         | 0.3114         |
| 10     | PP         | 132/139                                      | 1.1204                | 0.9984         | -0.0597        | 2.4448         | -0.0284        |
| 11     | PD         | 128/117                                      | 1.1266                | 1.0051         | -0.0367        | 0.678          | 0.0404         |
| 12     | WP         | 129/119                                      | 3.2425                | 0.798          | -0.0435        | 52.0549        | -0.7064        |
| 13     | LP         | 131/125                                      | 1.1421                | 1.0042         | -0.0374        | 0.7632         | 0.0358         |
| 14     | VP         | 132/139                                      | 1.1204                | 0.9984         | -0.0597        | 2.4448         | -0.0284        |
| 15     | BY         | 611/36                                       | 1.0902                | 1.0298         | -0.0354        | 0.7011         | 0.1178         |
| 16     | PC         | 611/36                                       | 1.0902                | 1.0298         | -0.0354        | 0.7011         | 0.1178         |
| 17     | HM         | 261/142                                      | 2.1493                | 0.9979         | -0.0175        | 1.4086         | -0.0008        |
| 18     | FM         | 317/19                                       | 1.0645                | 0.9918         | -0.0812        | 1.5754         | -0.0272        |
| 19     | BE         | 316/16                                       | 2.9435                | 0.9132         | -0.0141        | 1.658          | -0.1095        |
| 20     | RM         | 316/16                                       | 2.9435                | 0.9132         | -0.0141        | 1.658          | -0.1095        |
| 21     | SV         | 317/19                                       | 1.0645                | 0.9918         | -0.0812        | 1.5754         | -0.0272        |
| 22     | SM         | 318/18                                       | 6.1308                | 0.6904         | -0.0195        | 10.1563        | -0.5330        |
| 23     | BU         | 318/18                                       | 6.1308                | 0.6904         | -0.0195        | 10.1563        | -0.5330        |
| 24     | BB         | 371/21                                       | 6.0522                | 0.6768         | -0.0217        | 15.4232        | -0.6354        |
| 25     | SB         | 371/21                                       | 6.0522                | 0.6768         | -0.0217        | 15.4232        | -0.6354        |
| 26     | AH         | 068/73                                       | 0.9276                | 1.0591         | -0.0424        | 0.3529         | 0.3114         |
| 27     | HI         | 400/25                                       | 1.8326                | 1.0015         | -0.0207        | 1.408          | -0.0005        |
| 28     | CA         | 543/29                                       | 4.2286                | 0.7857         | -0.0178        | 4.6219         | -0.3591        |
| 29     | HB         | 068/73                                       | 0.9276                | 1.0591         | -0.0424        | 0.3529         | 0.3114         |
| 30     | RD         | 068/73                                       | 0.9276                | 1.0591         | -0.0424        | 0.3529         | 0.3114         |
| 31     | DW         | 068/73                                       | 0.9276                | 1.0591         | -0.0424        | 0.3529         | 0.3114         |
| 32     | PS         | 068/73                                       | 0.9276                | 1.0591         | -0.0424        | 0.3529         | 0.3114         |
| 33     | AB         | 531/26                                       | 29.73                 | 0.3631         | -0.0127        | 16.7616        | -0.6804        |
| 34     | AS         | 544/30                                       | 1.6505                | 0.9096         | -0.0644        | 125.7045       | -0.8908        |
| 35     | WA         | 541/28                                       | 4.1492                | 0.7531         | -0.0269        | 14.5384        | -0.5811        |
| 36     | BA         | 543/29                                       | 4.2286                | 0.7857         | -0.0178        | 4.6219         | -0.3591        |
| 37     | GA         | 544/30                                       | 1.6505                | 0.9096         | -0.0644        | 125.7045       | -0.8908        |
| 38     | HL         | 901/65                                       | 0.968                 | 1.0301         | -0.0468        | 0.1639         | 0.4127         |
| 39     | LB         | 043/72                                       | 1.5341                | 1.0013         | -0.0208        | 0.9986         | -0.0012        |
| 40     | HA         | 068/73                                       | 0.9276                | 1.0591         | -0.0424        | 0.3529         | 0.3114         |
| 41     | HY         | 531/26                                       | 29.73                 | 0.3631         | -0.0127        | 16.7616        | -0.6804        |
| 42     | BN         | 602/31                                       | 1.2898                | 0.9982         | -0.0289        | 0.8546         | 0.0171         |
| 43     | WN         | 602/31                                       | 1.2898                | 0.9982         | -0.0289        | 0.8546         | 0.0171         |
| 44     | SU         | 611/36                                       | 1.0902                | 1.0298         | -0.0354        | 0.7011         | 0.1178         |
| 45     | YP         | 621/39 (Mountain)                            | 1.2673                | 1.0            | -0.0331        | 1.1149         | 0.0001         |
| 45     | YP         | 621/38 (Piedmont)                            | 1.1798                | 1.0            | -0.0339        | 0.8117         | -0.0001        |
| 46     | MG         | 694/42                                       | 1.3213                | 0.9995         | -0.0254        | 0.8549         | -0.0016        |
| 47     | CT         | 802/52                                       | 1.2866                | 0.9962         | -0.0355        | 1.4485         | -0.0316        |
| 48     | MS         | 694/42                                       | 1.3213                | 0.9995         | -0.0254        | 0.8549         | -0.0016        |
| 49     | MV         | 694/42                                       | 1.3213                | 0.9995         | -0.0254        | 0.8549         | -0.0016        |
| 50     | ML         | 694/42                                       | 1.3213                | 0.9995         | -0.0254        | 0.8549         | -0.0016        |
| 51     | AP         | 068/73                                       | 0.9276                | 1.0591         | -0.0424        | 0.3529         | 0.3114         |
| 52     | MB         | 068/73                                       | 0.9276                | 1.0591         | -0.0424        | 0.3529         | 0.3114         |
| 53     | WT         | 691/41                                       | 1.2721                | 0.9995         | -0.0256        | 0.7447         | -0.0019        |
| 54     | BG         | 694/42                                       | 1.3213                | 0.9995         | -0.0254        | 0.8549         | -0.0016        |
| 55     | TS         | 694/42                                       | 1.3213                | 0.9995         | -0.0254        | 0.8549         | -0.0016        |
| 56     | HH         | 068/73                                       | 0.9276                | 1.0591         | -0.0424        | 0.3529         | 0.3114         |
| 57     | SD         | 068/73                                       | 0.9276                | 1.0591         | -0.0424        | 0.3529         | 0.3114         |
| 58     | RA         | 068/73                                       | 0.9276                | 1.0591         | -0.0424        | 0.3529         | 0.3114         |
| 59     | SY         | 621/39                                       | 1.2673                | 1.0391         | -0.0424        | 1.1149         | 0.0001         |
| 60     | CW         | 742/45                                       | 1.2834                | 0.9571         | -0.0331        | 1.1149         | -0.9223        |
| 00     | CVV        | 144/40                                       | 1.2004                | 0.5011         | -0.000         | Page 55 of 2   |                |

Page 55 of 241

| FVS    |            | NC-128 Height Growth<br>Equation (FIA code / |                |                |                |                |                       |
|--------|------------|----------------------------------------------|----------------|----------------|----------------|----------------|-----------------------|
| Number | Alpha Code | page number)                                 | C <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | <b>C</b> <sub>5</sub> |
| 61     | BT         | 743/47                                       | 5.2188         | 0.6855         | -0.0301        | 50.0071        | -0.8695               |
| 62     | BC         | 762/50                                       | 7.1846         | 0.6781         | -0.0222        | 13.9186        | -0.5268               |
| 63     | WO         | Upland Oak/52                                | 1.2866         | 0.9962         | -0.0355        | 1.4485         | -0.0316               |
| 64     | SO         | Upland Oak/52                                | 1.2866         | 0.9962         | -0.0355        | 1.4485         | -0.0316               |
| 65     | SK         | Upland Oak/52                                | 1.2866         | 0.9962         | -0.0355        | 1.4485         | -0.0316               |
| 66     | CB         | 813/58                                       | 1.0945         | 0.9938         | -0.0755        | 2.5601         | 0.0114                |
| 67     | TO         | 068/73                                       | 0.9276         | 1.0591         | -0.0424        | 0.3529         | 0.3114                |
| 68     | LK         | 068/73                                       | 0.9276         | 1.0591         | -0.0424        | 0.3529         | 0.3114                |
| 69     | OV         | 828/60                                       | 1.3295         | 0.9565         | -0.0668        | 16.0085        | -0.4157               |
| 70     | BJ         | 068/73                                       | 0.9276         | 1.0591         | -0.0424        | 0.3529         | 0.3114                |
| 71     | SN         | 827/59                                       | 1.3466         | 0.959          | -0.0574        | 8.9538         | -0.3454               |
| 72     | CK         | 802/52                                       | 1.2866         | 0.9962         | -0.0355        | 1.4485         | -0.0316               |
| 73     | WK         | 827/59                                       | 1.3466         | 0.959          | -0.0574        | 8.9538         | -0.3454               |
| 74     | CO         | Upland Oak/52                                | 1.2866         | 0.9962         | -0.0355        | 1.4485         | -0.0316               |
| 75     | RO         | Upland Oak/52                                | 1.2866         | 0.9962         | -0.0355        | 1.4485         | -0.0316               |
| 76     | QS         | 813/58                                       | 1.0945         | 0.9938         | -0.0755        | 2.5601         | 0.0114                |
| 77     | PO         | 068/73                                       | 0.9276         | 1.0591         | -0.0424        | 0.3529         | 0.3114                |
| 78     | ВО         | Upland Oak/52                                | 1.2866         | 0.9962         | -0.0355        | 1.4485         | -0.0316               |
| 79     | LO         | 827/59                                       | 1.3466         | 0.959          | -0.0574        | 8.9538         | -0.3454               |
| 80     | BK         | 901/65                                       | 0.968          | 1.0301         | -0.0468        | 0.1639         | 0.4127                |
| 81     | WI         | 901/65                                       | 0.968          | 1.0301         | -0.0468        | 0.1639         | 0.4127                |
| 82     | SS         | 068/73                                       | 0.9276         | 1.0591         | -0.0424        | 0.3529         | 0.3114                |
| 83     | BW         | 951/66                                       | 4.7633         | 0.7576         | -0.0194        | 6.511          | -0.4156               |
| 84     | EL         | 972/68                                       | 6.4362         | 0.6827         | -0.0194        | 10.9767        | -0.5477               |
| 85     | WE         | 972/68                                       | 6.4362         | 0.6827         | -0.0194        | 10.9767        | -0.5477               |
| 86     | AE         | 972/68                                       | 6.4362         | 0.6827         | -0.0194        | 10.9767        | -0.5477               |
| 87     | RL         | 972/68                                       | 6.4362         | 0.6827         | -0.0194        | 10.9767        | -0.5477               |
| 88     | OS         | 068/73                                       | 0.9276         | 1.0591         | -0.0424        | 0.3529         | 0.3114                |
| 89     | OH         | 068/73                                       | 0.9276         | 1.0591         | -0.0424        | 0.3529         | 0.3114                |
| 90     | OT         | 068/73                                       | 0.9276         | 1.0591         | -0.0424        | 0.3529         | 0.3114                |

For all species, a small random error is then added to the height growth estimate. The estimated height growth is then adjusted to account for cycle length, user defined small-tree height growth adjustments, and adjustments due to small tree height increment calibration from input data.

Height growth estimates from the small-tree model are weighted with the height growth estimates from the large tree model over a range of diameters ( $X_{min}$  and  $X_{max}$ ) in order to smooth the transition between the two models. For example, the closer a tree's DBH value is to the minimum diameter ( $X_{min}$ ), the more the growth estimate will be weighted towards the small-tree growth model. The closer a tree's DBH value is to the maximum diameter ( $X_{max}$ ), the more the growth estimate will be weighted towards the large-tree growth model. If a tree's DBH value falls outside of the range given by  $X_{min}$  and  $X_{max}$ , then the model will use only the small-tree or large-tree growth model in the growth estimate. The weight applied to the growth estimate is calculated using equation {4.6.1.2}, and applied as shown in equation {4.6.1.3}. The range of diameters for each species is shown in table 4.6.1.3.

```
\{4.6.1.3\} Estimated growth = [(1 - XWT) * STGE] + [XWT * LTGE]
```

where:

XWT is the weight applied to the growth estimates

*DBH* is tree diameter at breast height

 $X_{max}$  is the maximum *DBH* is the diameter range, set to 1.0"  $X_{min}$  is the minimum *DBH* in the diameter range, set to 3.0"

STGE is the growth estimate obtained using the small-tree growth model LTGE is the growth estimate obtained using the large-tree growth model

#### 4.6.2 Small Tree Diameter Growth

As stated previously, for trees being projected with the small tree equations, height growth is predicted first, and then diameter growth. So both height at the beginning of the cycle and height at the end of the cycle are known when predicting diameter growth. Small tree diameter growth for trees over 4.5 feet tall is calculated as the difference of predicted diameter at the start of the projection period and the predicted diameter at the end of the projection period, adjusted for bark ratio. These two predicted diameters are estimated using the species-specific height-diameter relationships discussed in section 4.1. By definition, diameter growth is zero for trees less than 4.5 feet tall.

### **4.7 Large Tree Growth Relationships**

Trees are considered "large trees" for FVS modeling purposes when they are equal to, or larger than, some threshold diameter. This threshold diameter is set to 3.0" for all species in the SN variant.

The large-tree model is driven by diameter growth meaning diameter growth is estimated first, and then height growth is estimated from diameter growth and other variables. These relationships are discussed in the following sections.

#### 4.7.1 Large Tree Diameter Growth

The large tree diameter growth model used in most FVS variants is described in section 7.2.1 in Dixon (2002). For most variants, instead of predicting diameter increment directly, the natural log of the periodic change in squared inside-bark diameter (ln(*DDS*)) is predicted (Dixon 2002; Wykoff 1990; Stage 1973; and Cole and Stage 1972). For variants predicting diameter increment directly, diameter increment is converted to the *DDS* scale to keep the FVS system consistent across all variants.

The SN variant predictes diameter growth using equation {4.7.1.1}. Coefficients for this equation are shown in tables 4.7.1.1 and 4.7.1.5. For longleaf pine and loblolly pine on the Fort Bragg Military Reservation, a different equation developed by John Shaw, Rocky Mountain Research Station.

$$\{4.7.1.1\} \ln(DDS) = \beta_1 + (\beta_2 * \ln(DBH)) + (\beta_3 * DBH^2) + (\beta_4 * \ln(CR)) + (\beta_5 * RELHT) + (\beta_6 * SI) + (\beta_7 * PBA) + (\beta_8 * PBAL) + (\beta_9 * \tan(SLOPE)) + (\beta_{10} * \cos(ASP) * SLOPE) + (\beta_{11} * \sin(ASP) * SLOPE) + (\beta_{12} * FORTYPE) + (\beta_{13} * ECOUNIT) + (\beta_{14} * PLANT)$$

where:

DDS is the predicted periodic change in squared inside-bark diameter

DBH is tree diameter at breast height CR is crown ratio expressed as a percent

HREL is relative height of subject tree to the Top Height of the stand

SI is site index of the species
PBA is the plot basal area per acre
PBAL is the plot basal area in larger trees

SLOPE is the stand slope
ASPECT is the stand aspect

FORTYPE is a categorical variable for the current forest type group of the stand

ECOUNIT is a categorical variable for the ecological unit province code

*PLANT* is a categorical variable for managed stands of sand pine, slash pine,

longleaf pine, eastern white pine and loblolly pine

 $\beta_1$  -  $\beta_{11}$  are species-specific coefficients shown in tables 4.7.1.1

 $\beta_{12}$  is a coefficient based on the current forest type group shown in table 4.7.1.2  $\beta_{13}$  is a coefficient based on the ecological unit province code shown in table

4.7.1.3

 $\beta_{14}$  is a coefficient in managed stands of PU, SA, LL, WP, and LP shown in table

4.7.1.4

During data analysis and regression fitting for the large-tree diameter growth model, it became apparent that data for most species were concentrated in small to medium large trees and were lacking in the very large size classes. Since this could lead to overestimation of diameter growth in larger trees, a bounding function was established to decrease the growth rates for very large trees.

The bounding function is applied using the following concepts. For a tree with projected diameter less than the lower diameter-bounding limit, diameter growth is not modified. For a tree with a projected diameter greater than the lower diameter-bounding limit and less than the upper diameter-bounding limit, diameter growth is modified using equation {4.7.1.2}. For a tree with a projected diameter greater than the upper diameter-bounding limit, diameter growth is multiplied by 0.1. The lower and upper diameter limits were determined from data used to fit the diameter growth models and from literature for mature and maximum tree sizes (Harlow and Harrar 1968, Burns and Honkala 1990). The bounding limits for the diameter growth bounding function are located in Table 4.7.1.5.

$$\{4.7.1.2\}\ DGBMOD = 1.0 - 0.9 * ((DBH - DBH_{LOW}) / DBH_{HI} - DBH_{LOW}))$$

where:

DGBMOD is diameter growth bounding modifier DBH is the predicted diameter at breast height  $DBH_{LOW}$  is the lower diameter-bounding limit  $DBH_{HI}$  is the upper diameter-bounding limit

**Table 4.7.1.1** Default coefficients ( $\beta_1$  -  $\beta_{11}$ ) for the non-categorical variables of the diameter increment model by species for the SN variant.

**Model Coefficients FVS Alpha** number Code  $\beta_1$  $\beta_6$ FR -2.267851 1.442529 -0.000548 0.568468 -0.001151 -0.241408 2 JU -1.864431 1.403065 -0.001237 0.273616 -0.000374 -0.231988 Ы -2.267851 1.442529 -0.000548 0.568468 -0.001151 -0.241408 3 PU 4 -3.791466 1.796179 -0.005109 0.902185 -0.002009 0.501409 SP 5 -0.008942 1.23817 -0.00117 0.053076 0.004723 -0.704687 6 SA 1.461093 -1.641698 -0.00253 0.265872 0.006851 -0.018479 7 SR -2.431165 1.691731 -0.000945 0.588558 0.000109 -0.324278 8 LL -1.331052 1.098112 -0.001834 0.184512 0.008774 0.225213 9 TM -2.600803 1.525435 -0.003519 0.615731 0.001033 -0.217771 10 PΡ -3.639059 1.397394 -0.00167 0.739443 0.008731 -0.317178 PD 11 -2.353114 1.425614 -0.001694 0.455833 0.007876 0.685018 12 WP -3.497764 1.339503 -0.000961 0.004214 -0.372738 0.75906 13 LP 0.222214 1.16304 -0.000863 0.028483 0.005018 -0.759347 VP 14 -2.600803 1.525435 -0.003519 0.615731 -0.217771 0.001033 15 BY -1.735969 1.505649 -0.000054 0.132441 0.003996 -0.560585 16 PC -4.224977 1.831739 -0.000595 0.446234 0.005975 2.356739 17 -0.241408 HM -2.267851 1.442529 -0.000548 0.568468 -0.001151 18 FΜ -1.685778 1.454506 -0.000818 0.242436 0.00436 -0.339807 19 ΒE -0.871047 1.217898 -0.000105 0.240101 -0.000022 -0.613177 20 RM -2.260482 1.449834 -0.000931 0.361311 0.003444 -0.097604 21 SV 1.449834 -0.097604 -2.260482 -0.000931 0.361311 0.003444 22 SM -2.313444 1.350084 -0.000816 0.394806 -0.000542 -0.032482 23 -1.876225 1.197048 -0.000778 0.183857 0.010254 -0.178079 BU 24 ΒB 1.024946 -0.000653 0.20677 0.002354 -0.192793 -1.092055 25 SB -1.092055 1.024946 -0.000653 0.20677 0.002354 -0.192793 26 AΗ -1.281144 1.335625 0.111128 0.005347 -0.224489 27 HI -2.728289 1.548449 -0.000761 0.203837 0.004399 -0.245761 28 CA -1.06898 1.164191 0.084279 0.0097 0.075733 0 29 HB -0.833167 1.190567 0 0.193368 -0.000056 -0.179044 30 RD -1.062539 1.17405 0 0.239942 -0.005893 -0.391784 31 DW -2.540719 1.293125 -0.000856 0.368481 0.004257 -0.282662 32 PS 1.479865 -0.001512 -0.327799 -2.524455 0.289171 0.003369 -0.000447 33 AΒ -1.251887 1.349337 0.193148 -0.000287-0.3804 34 0.377819 0.007104 AS -2.954457 1.461691 0 -0.619659 WA 35 -1.315283 1.216264 80000.0-0.087907 0.003424 0.018297 ΒA -0.897707 1.243091 0.090158 -0.000465 -0.158064 36 0 37 GA -0.897707 1.243091 0 0.090158 -0.000465 -0.158064 HL -0.314922 0.927191 0.103234 0.003038 -0.107755 38 0 39 LB -2.514589 1.459672 -0.001317 0.654209 -0.003582 -3.469125 40 HA -2.352258 1.746852 0 0.291502 0.003239 0.335703 41 HY-1.981934 1.456263 -0.002061 0.215249 0.00424 -0.303627 42 BN 1.050171 0.425328 -2.35419 -0.000154 0.001348 0.133415 43 WN -2.35419 1.050171 -0.000154 0.425328 0.001348 0.133415 44 SU -1.324147 1.395884 -0.00049 0.145539 0.001993 -0.502977 45 YΡ -2.513351 1.495351 -0.000756 0.530123 0.000746 -0.321777 46 MG -2.516823 1.454173 -0.000925 0.252335 0.007223 -0.025555 47 CT -0.000092 -0.308453 -1.239592 1.06336 0.243097 -0.003084 0.405735 48 MS -1.477929 1.126474 -0.000267 0.134257 0.005884 ΜV 1.454173 0.252335 0.007223 49 -2.516823 -0.000925 -0.025555 50 ML-1.477929 1.126474 -0.000267 0.134257 0.005884 0.405735 ΑP 1.234133 -0.872861 51 -1.746231 -0.000017 0.285511 0.002596 52 MB -1.746231 1.234133 -0.000017 0.285511 0.002596 -0.872861

Page 59 of 241

| FVS    | Alpha |           |          | Model Co  | efficients |           |           |
|--------|-------|-----------|----------|-----------|------------|-----------|-----------|
| number | Code  | $\beta_1$ | $eta_2$  | $\beta_3$ | β4         | $\beta_5$ | $\beta_6$ |
| 53     | WT    | -2.721782 | 1.599221 | -0.000162 | 0.351271   | 0.001783  | -0.023349 |
| 54     | BG    | -1.508549 | 1.306362 | -0.000576 | 0.112403   | 0.003356  | -0.296628 |
| 55     | TS    | -2.55572  | 1.303035 | 0         | 0.319301   | 0.006498  | -0.130105 |
| 56     | HH    | -1.431973 | 1.452294 | -0.001475 | 0.061077   | 0.004856  | -0.422675 |
| 57     | SD    | -3.18004  | 1.35579  | -0.000784 | 0.532236   | 0.00517   | -0.29268  |
| 58     | RA    | -2.096616 | 1.254708 | 0         | 0.344067   | 0.002656  | -1.762191 |
| 59     | SY    | -1.012995 | 1.272885 | -0.000238 | 0.23453    | 0.000406  | -0.092471 |
| 60     | CW    | -1.06898  | 1.164191 | 0         | 0.084279   | 0.0097    | 0.075733  |
| 61     | BT    | -1.06898  | 1.164191 | 0         | 0.084279   | 0.0097    | 0.075733  |
| 62     | BC    | -2.610023 | 1.22031  | -0.000234 | 0.520739   | 0.003897  | -0.071719 |
| 63     | WO    | -1.608339 | 1.468589 | -0.000778 | 0.139456   | 0.00453   | -0.223273 |
| 64     | SO    | -2.284302 | 1.569893 | -0.000632 | 0.272422   | 0.005065  | -0.204324 |
| 65     | SK    | -0.783581 | 1.432483 | -0.000412 | 0.04446    | 0.003012  | -0.312121 |
| 66     | СВ    | -0.295485 | 1.239946 | -0.000163 | 0.020622   | 0.00383   | -0.105862 |
| 67     | TO    | -2.69813  | 1.622081 | -0.001703 | 0.354924   | 0.000682  | -1.084846 |
| 68     | LK    | -1.561284 | 1.335456 | -0.000412 | 0.246163   | 0.004714  | -0.704548 |
| 69     | OV    | -0.947174 | 1.37635  | -0.000482 | 0.099697   | 0.00128   | -0.666854 |
| 70     | BJ    | -1.948938 | 1.611438 | -0.000844 | 0.135696   | 0.00274   | -0.071837 |
| 71     | SN    | -1.321662 | 1.640507 | -0.000285 | 0.038193   | 0.005844  | -1.251051 |
| 72     | CK    | -2.223515 | 0.937359 | 0.000212  | 0.286311   | 0.008621  | -0.065269 |
| 73     | WK    | -0.845477 | 1.488444 | -0.000286 | 0.053292   | 0.00533   | -0.151128 |
| 74     | CO    | -2.900655 | 1.34735  | -0.000533 | 0.300133   | 0.008415  | -0.133852 |
| 75     | RO    | -2.732646 | 1.49945  | -0.000729 | 0.344764   | 0.004632  | -0.174932 |
| 76     | QS    | -0.328678 | 1.282494 | -0.000351 | 0.071625   | -0.001173 | -0.692617 |
| 77     | PO    | -1.430321 | 1.293728 | -0.000452 | 0.047937   | 0.005466  | -0.408878 |
| 78     | ВО    | -2.345845 | 1.45033  | -0.000674 | 0.251441   | 0.005921  | -0.307814 |
| 79     | LO    | -3.64066  | 1.448503 | -0.00021  | 0.549199   | 0.009377  | -0.099727 |
| 80     | BK    | -1.307911 | 0.963269 | 0         | 0.268621   | 0.003713  | -0.335364 |
| 81     | WI    | -1.109398 | 1.187096 | 0         | 0.202056   | 0.006303  | -0.135482 |
| 82     | SS    | -1.745126 | 1.31334  | -0.000179 | 0.201048   | 0.004206  | -0.01334  |
| 83     | BW    | -1.848106 | 1.424209 | -0.001488 | 0.289244   | 0.003499  | -0.580068 |
| 84     | EL    | -2.356235 | 1.479429 | -0.000517 | 0.425367   | 0.002767  | -1.000956 |
| 85     | WE    | -0.790138 | 0.949707 | 0         | 0.100266   | 0.00436   | -0.439374 |
| 86     | AE    | -0.510736 | 1.164789 | 0         | 0.127893   | 0.00045   | -0.446461 |
| 87     | RL    | -0.229212 | 1.060275 | 0         | 0.116801   | -0.001806 | 0.158824  |
| 88     | OS    | -1.864431 | 1.403065 | -0.001237 | 0.273616   | -0.000374 | -0.231988 |
| 89     | OH    | -1.431973 | 1.452294 | -0.001475 | 0.061077   | 0.004856  | -0.422675 |
| 90     | OT    | -1.645961 | 1.447657 | -0.002158 | 0.241038   | -0.00325  | -1.080004 |

| FVS    | Alpha |           | Mod       | lel Coefficien | its          |              |
|--------|-------|-----------|-----------|----------------|--------------|--------------|
| number | Code  | $\beta_7$ | $\beta_8$ | β9             | $\beta_{10}$ | $\beta_{11}$ |
| 1      | FR    | 0.066508  | 0.086959  | -0.403762      | -0.000824    | -0.002503    |
| 2      | JU    | 0.077542  | -0.025792 | 0.177408       | -0.00362     | -0.00189     |
| 3      | PI    | 0.066508  | 0.086959  | -0.403762      | -0.000824    | -0.002503    |
| 4      | PU    | -1.788107 | -1.231519 | 0              | -0.005287    | -0.003203    |
| 5      | SP    | 0.127667  | 0.028391  | 0.040334       | -0.004394    | -0.003271    |
| 6      | SA    | -0.193157 | -0.251016 | 0.069104       | -0.002939    | -0.004873    |
| 7      | SR    | 0.526867  | 0.009866  | -0.326169      | -0.001847    | -0.001394    |
| 8      | LL    | 0.086883  | 0.107445  | 0.388018       | -0.002182    | -0.002898    |
| 9      | TM    | 0.018819  | -0.052142 | 0.059646       | -0.002304    | -0.002716    |
| 10     | PP    | 0.083538  | 0.150686  | -0.193198      | -0.002257    | -0.002188    |
| 11     | PD    | -2.907934 | 1.683401  | -0.198222      | -0.003001    | -0.00451     |
| 12     | WP    | -0.085193 | -0.035582 | 0.605201       | -0.000865    | -0.004065    |

| Number   Code   β <sub>7</sub>   β <sub>8</sub>   β <sub>9</sub>   β <sub>10</sub>   β <sub>11</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |       |           | 14 -      | 1-1-0     | 4 -       |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----------|-----------|-----------|-----------|-----------|
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FVS | Alpha |           |           |           |           |           |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |           |           |           |           |           |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |           |           |           |           | -0.004184 |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |           |           |           |           | -0.002716 |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |           |           |           |           | -0.000768 |
| 18         FM         -0.204878         -0.14711         -0.140837         -0.003268         -0.0011           19         BE         0.315909         -0.237088         0.071213         -0.001242         -0.0001           20         RM         -0.069753         0.094162         0.282436         -0.002133         -0.0011           21         SV         -0.069753         0.094162         0.282436         -0.002133         -0.0011           22         SM         -0.009543         0.005581         0.631803         -0.001413         -0.0011           23         BU         0.187157         -0.108544         0.547747         -0.004219         -0.000           24         BB         -0.112449         0.113349         0.489441         -0.002005         -0.001           25         SB         -0.112449         0.113349         0.489441         -0.002005         -0.001           26         AH         0.031993         -0.160702         -0.244632         -0.003852         -0.001           27         HI         0.055798         0.080648         0.570012         -0.003329         -0.001           28         CA         -0.601088         -0.757088         0.501307         -0.0014                                                                                                                  |     |       |           |           |           |           | -0.0006   |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |           |           |           |           | -0.002503 |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |           |           |           |           | -0.001923 |
| 21         SV         -0.069753         0.094162         0.282436         -0.002133         -0.001           22         SM         -0.009543         0.005581         0.631803         -0.001413         -0.001           23         BU         0.187157         -0.108544         0.547747         -0.004219         -0.000           24         BB         -0.112449         0.113349         0.489441         -0.002005         -0.001           25         SB         -0.112449         0.113349         0.489441         -0.002005         -0.001           26         AH         0.031993         -0.160702         -0.244632         -0.003852         -0.0001           27         HI         0.055798         0.080648         0.570012         -0.003352         -0.001           28         CA         -0.601088         -0.757088         0.501307         -0.00141         -0.001           29         HB         0.039673         -0.071628         0.508738         -0.001846         -0.001           30         RD         0.039121         -0.03835         0.411945         -0.001141         -0.002           31         DW         -0.084011         0.104748         -0.611245         -0.003144 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-0.000826</td>                                       |     |       |           |           |           |           | -0.000826 |
| 22         SM         -0.009543         0.005581         0.631803         -0.001413         -0.001           23         BU         0.187157         -0.108544         0.547747         -0.004219         -0.000           24         BB         -0.112449         0.113349         0.489441         -0.002005         -0.001           25         SB         -0.112449         0.113349         0.489441         -0.002005         -0.001           26         AH         0.031993         -0.160702         -0.244632         -0.003352         -0.001           27         HI         0.055798         0.080648         0.570012         -0.003339         -0.001           28         CA         -0.661088         -0.757088         0.501307         -0.001041         -0.001           29         HB         0.039673         -0.071628         0.508738         -0.00144         -0.001           30         RD         0.039121         -0.03835         0.411945         -0.001141         -0.002           31         DW         -0.084011         0.104748         -0.611245         -0.003144         -0.001           32         PS         -0.200696         -0.145939         0.243575         -0.001319 <td></td> <td></td> <td>-0.069753</td> <td></td> <td></td> <td>-0.002133</td> <td>-0.001383</td>                     |     |       | -0.069753 |           |           | -0.002133 | -0.001383 |
| 23         BU         0.187157         -0.108544         0.547747         -0.004219         -0.000           24         BB         -0.112449         0.113349         0.489441         -0.002005         -0.001           25         SB         -0.112449         0.113349         0.489441         -0.002005         -0.001           26         AH         0.031993         -0.160702         -0.244632         -0.003852         -0.000           27         HI         0.055798         0.080648         0.570012         -0.003339         -0.001           28         CA         -0.601088         -0.757088         0.501307         -0.00141         -0.001           29         HB         0.039673         -0.071628         0.508738         -0.001846         -0.001           30         RD         0.039121         -0.03835         0.411945         -0.001441         -0.002           31         DW         -0.084011         0.104748         -0.611245         -0.001319         -0.002           32         PS         -0.200696         -0.145939         0.243575         -0.001319         -0.002           33         AB         0.160386         -0.088382         0.279322         -0.002547 <td></td> <td></td> <td>-0.069753</td> <td>0.094162</td> <td>0.282436</td> <td>-0.002133</td> <td>-0.001383</td>     |     |       | -0.069753 | 0.094162  | 0.282436  | -0.002133 | -0.001383 |
| 24         BB         -0.112449         0.113349         0.489441         -0.002005         -0.0016           25         SB         -0.112449         0.113349         0.489441         -0.002005         -0.0016           26         AH         0.031993         -0.160702         -0.244632         -0.003852         -0.0001           27         HI         0.055798         0.080648         0.570012         -0.003339         -0.0011           28         CA         -0.601088         -0.757088         0.501307         -0.001041         -0.001           29         HB         0.039673         -0.071628         0.508738         -0.001846         -0.001           30         RD         0.039121         -0.03835         0.411945         -0.001141         -0.002           31         DW         -0.084011         0.104748         -0.611245         -0.003144         -0.001           32         PS         -0.200696         -0.145939         0.243575         -0.001319         -0.002           33         AB         0.160386         -0.088382         0.279322         -0.002547         -0.001           34         AS         0.020132         -0.020785         0.185353         -0.00227                                                                                                                  |     |       |           | 0.005581  | 0.631803  | -0.001413 | -0.001527 |
| 25         SB         -0.112449         0.113349         0.489441         -0.002005         -0.0018           26         AH         0.031993         -0.160702         -0.244632         -0.003852         -0.0001           27         HI         0.055798         0.080648         0.570012         -0.003339         -0.001           28         CA         -0.601088         -0.757088         0.501307         -0.001041         -0.001           29         HB         0.039673         -0.071628         0.508738         -0.001846         -0.001           30         RD         0.039121         -0.03835         0.411945         -0.001141         -0.002           31         DW         -0.084011         0.104748         -0.611245         -0.001144         -0.001           32         PS         -0.200696         -0.145939         0.243575         -0.001319         -0.002           33         AB         0.160386         -0.020785         0.185353         -0.002547         -0.001           34         AS         0.020132         -0.020785         0.185353         -0.00227         -0.000           35         WA         -0.001091         -0.021565         0.487191         -0.000807<                                                                                                                  |     |       |           |           | 0.547747  | -0.004219 | -0.000586 |
| 26         AH         0.031993         -0.160702         -0.244632         -0.003852         -0.0001           27         HI         0.055798         0.080648         0.570012         -0.003339         -0.0010           28         CA         -0.601088         -0.757088         0.501307         -0.001041         -0.001           29         HB         0.039673         -0.071628         0.508738         -0.001846         -0.001           30         RD         0.039121         -0.03835         0.411945         -0.001141         -0.002           31         DW         -0.084011         0.104748         -0.611245         -0.001144         -0.001           32         PS         -0.200696         -0.145939         0.243575         -0.001319         -0.002           33         AB         0.160386         -0.088382         0.279322         -0.002547         -0.001           34         AS         0.020132         -0.020785         0.185353         -0.00227         -0.000           35         WA         -0.001091         -0.021565         0.487191         -0.000807         -0.001           36         BA         -0.138225         -0.081197         0.496594         -0.000001                                                                                                                  |     |       | -0.112449 | 0.113349  | 0.489441  | -0.002005 | -0.001848 |
| 27         HI         0.055798         0.080648         0.570012         -0.003339         -0.0010           28         CA         -0.601088         -0.757088         0.501307         -0.001041         -0.001           29         HB         0.039673         -0.071628         0.508738         -0.001846         -0.001           30         RD         0.039121         -0.03835         0.411945         -0.001141         -0.002           31         DW         -0.084011         0.104748         -0.611245         -0.003144         -0.001           32         PS         -0.200696         -0.145939         0.243575         -0.001319         -0.002           33         AB         0.160386         -0.088382         0.279322         -0.002547         -0.001           34         AS         0.020132         -0.020785         0.185353         -0.002027         -0.000           35         WA         -0.001091         -0.021565         0.487191         -0.000807         -0.001           36         BA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           37         GA         -0.138225         -0.081197         0.496594         -0.000001<                                                                                                                  |     |       | -0.112449 | 0.113349  | 0.489441  | -0.002005 | -0.001848 |
| 28         CA         -0.601088         -0.757088         0.501307         -0.001041         -0.0013           29         HB         0.039673         -0.071628         0.508738         -0.001846         -0.0013           30         RD         0.039121         -0.03835         0.411945         -0.001141         -0.0023           31         DW         -0.084011         0.104748         -0.611245         -0.003144         -0.0013           32         PS         -0.200696         -0.145939         0.243575         -0.001319         -0.002           33         AB         0.160386         -0.088382         0.279322         -0.002547         -0.001           34         AS         0.020132         -0.020785         0.185353         -0.002027         -0.000           35         WA         -0.001091         -0.021565         0.487191         -0.000807         -0.001           36         BA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           37         GA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           38         HL         0.958763         0.823135         0.538379         -0.00118                                                                                                                  |     | AH    | 0.031993  | -0.160702 | -0.244632 | -0.003852 | -0.000644 |
| 29         HB         0.039673         -0.071628         0.508738         -0.001846         -0.001           30         RD         0.039121         -0.03835         0.411945         -0.001141         -0.002           31         DW         -0.084011         0.104748         -0.611245         -0.003144         -0.001           32         PS         -0.200696         -0.145939         0.243575         -0.001319         -0.002           33         AB         0.160386         -0.088382         0.279322         -0.002547         -0.001           34         AS         0.020132         -0.020785         0.185353         -0.002027         -0.000           35         WA         -0.001091         -0.021565         0.487191         -0.000807         -0.001           36         BA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           37         GA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           38         HL         0.958763         0.823135         0.538379         -0.001181         -0.002           39         LB         -10.149549         1.404412         0.106808         -0.000311 <td>27</td> <td>HI</td> <td>0.055798</td> <td>0.080648</td> <td>0.570012</td> <td>-0.003339</td> <td>-0.001029</td> | 27  | HI    | 0.055798  | 0.080648  | 0.570012  | -0.003339 | -0.001029 |
| 30         RD         0.039121         -0.03835         0.411945         -0.001141         -0.002           31         DW         -0.084011         0.104748         -0.611245         -0.003144         -0.001           32         PS         -0.200696         -0.145939         0.243575         -0.001319         -0.002           33         AB         0.160386         -0.088382         0.279322         -0.002547         -0.001           34         AS         0.020132         -0.020785         0.185353         -0.002027         -0.000           35         WA         -0.001091         -0.021565         0.487191         -0.000807         -0.001           36         BA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           37         GA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           38         HL         0.958763         0.823135         0.538379         -0.001181         -0.002           39         LB         -10.149549         1.404412         0.106808         -0.000311         -0.002           40         HA         -0.657751         0.585839         -1.771604         0                                                                                                                            | 28  | CA    | -0.601088 | -0.757088 | 0.501307  | -0.001041 | -0.001349 |
| 31         DW         -0.084011         0.104748         -0.611245         -0.003144         -0.0013           32         PS         -0.200696         -0.145939         0.243575         -0.001319         -0.002           33         AB         0.160386         -0.088382         0.279322         -0.002547         -0.001           34         AS         0.020132         -0.020785         0.185353         -0.002027         -0.000           35         WA         -0.001091         -0.021565         0.487191         -0.000807         -0.001           36         BA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           37         GA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           38         HL         0.958763         0.823135         0.538379         -0.001181         -0.002           39         LB         -10.149549         1.404412         0.106808         -0.000311         -0.002           40         HA         -0.657751         0.585839         -1.771604         0         -0.000           41         HY         0.210525         -0.159362         -0.414064         -0.003966                                                                                                                         | 29  | НВ    | 0.039673  | -0.071628 | 0.508738  | -0.001846 | -0.001776 |
| 32         PS         -0.200696         -0.145939         0.243575         -0.001319         -0.002           33         AB         0.160386         -0.088382         0.279322         -0.002547         -0.001           34         AS         0.020132         -0.020785         0.185353         -0.002027         -0.000           35         WA         -0.001091         -0.021565         0.487191         -0.000807         -0.001           36         BA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           37         GA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           38         HL         0.958763         0.823135         0.538379         -0.001181         -0.002           39         LB         -10.149549         1.404412         0.106808         -0.000311         -0.002           40         HA         -0.657751         0.585839         -1.771604         0         -0.000           41         HY         0.210525         -0.159362         -0.414064         -0.003996         -0.000           42         BN         -0.209729         0.014948         0.616257         -0.000564                                                                                                                           | 30  | RD    | 0.039121  | -0.03835  | 0.411945  | -0.001141 | -0.002822 |
| 33         AB         0.160386         -0.088382         0.279322         -0.002547         -0.001           34         AS         0.020132         -0.020785         0.185353         -0.002027         -0.000           35         WA         -0.001091         -0.021565         0.487191         -0.000807         -0.001           36         BA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           37         GA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           38         HL         0.958763         0.823135         0.538379         -0.001181         -0.002           39         LB         -10.149549         1.404412         0.106808         -0.000311         -0.002           40         HA         -0.657751         0.585839         -1.771604         0         -0.002           41         HY         0.210525         -0.159362         -0.414064         -0.003096         -0.000           42         BN         -0.209729         0.014948         0.616257         -0.000564         -0.000           43         WN         -0.209729         0.014948         0.616257         -0.000564                                                                                                                            | 31  | DW    | -0.084011 | 0.104748  | -0.611245 | -0.003144 | -0.001235 |
| 34         AS         0.020132         -0.020785         0.185353         -0.002027         -0.000           35         WA         -0.001091         -0.021565         0.487191         -0.000807         -0.001           36         BA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           37         GA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           38         HL         0.958763         0.823135         0.538379         -0.001181         -0.002           39         LB         -10.149549         1.404412         0.106808         -0.000311         -0.002           40         HA         -0.657751         0.585839         -1.771604         0         -0.000           41         HY         0.210525         -0.159362         -0.414064         -0.003096         -0.000           42         BN         -0.209729         0.014948         0.616257         -0.000564         -0.000           43         WN         -0.209729         0.014948         0.616257         -0.002978         -0.00           44         SU         0.141477         0.003549         0.256765         -0.002978                                                                                                                              | 32  | PS    | -0.200696 | -0.145939 | 0.243575  | -0.001319 | -0.002784 |
| 35         WA         -0.001091         -0.021565         0.487191         -0.000807         -0.0013           36         BA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           37         GA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           38         HL         0.958763         0.823135         0.538379         -0.001181         -0.002           39         LB         -10.149549         1.404412         0.106808         -0.000311         -0.002           40         HA         -0.657751         0.585839         -1.771604         0         -0.000           41         HY         0.210525         -0.159362         -0.414064         -0.003096         -0.000           42         BN         -0.209729         0.014948         0.616257         -0.000564         -0.000           43         WN         -0.209729         0.014948         0.616257         -0.000564         -0.000           44         SU         0.141477         0.003549         0.256765         -0.002978         -0.00           45         YP         -0.001645         0.064815         0.161718         -0.001839                                                                                                                             | 33  | AB    | 0.160386  | -0.088382 | 0.279322  | -0.002547 | -0.001176 |
| 36         BA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           37         GA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           38         HL         0.958763         0.823135         0.538379         -0.001181         -0.002           39         LB         -10.149549         1.404412         0.106808         -0.000311         -0.002           40         HA         -0.657751         0.585839         -1.771604         0         -0.002           41         HY         0.210525         -0.159362         -0.414064         -0.003096         -0.000           42         BN         -0.209729         0.014948         0.616257         -0.000564         -0.000           43         WN         -0.209729         0.014948         0.616257         -0.000564         -0.000           44         SU         0.141477         0.003549         0.256765         -0.002978         -0.00           45         YP         -0.001645         0.064815         0.161718         -0.001839         -0.002           46         MG         0.149606         0.032438         0.243666         -0.001259                                                                                                                                | 34  | AS    | 0.020132  | -0.020785 | 0.185353  | -0.002027 | -0.000779 |
| 37         GA         -0.138225         -0.081197         0.496594         -0.000001         -0.00           38         HL         0.958763         0.823135         0.538379         -0.001181         -0.002           39         LB         -10.149549         1.404412         0.106808         -0.000311         -0.002           40         HA         -0.657751         0.585839         -1.771604         0         -0.000           41         HY         0.210525         -0.159362         -0.414064         -0.003096         -0.000           42         BN         -0.209729         0.014948         0.616257         -0.000564         -0.000           43         WN         -0.209729         0.014948         0.616257         -0.000564         -0.000           44         SU         0.141477         0.003549         0.256765         -0.002978         -0.00           45         YP         -0.001645         0.064815         0.161718         -0.001839         -0.002           46         MG         0.149606         0.032438         0.243666         -0.001259         -0.001           47         CT         -0.063579         0.017095         0.539         -0.00274                                                                                                                                    | 35  | WA    | -0.001091 | -0.021565 | 0.487191  | -0.000807 | -0.001262 |
| 38         HL         0.958763         0.823135         0.538379         -0.001181         -0.002           39         LB         -10.149549         1.404412         0.106808         -0.000311         -0.002           40         HA         -0.657751         0.585839         -1.771604         0         -0.000           41         HY         0.210525         -0.159362         -0.414064         -0.003096         -0.000           42         BN         -0.209729         0.014948         0.616257         -0.000564         -0.000           43         WN         -0.209729         0.014948         0.616257         -0.000564         -0.000           44         SU         0.141477         0.003549         0.256765         -0.002978         -0.00           45         YP         -0.001645         0.064815         0.161718         -0.001839         -0.002           46         MG         0.149606         0.032438         0.243666         -0.001259         -0.001           47         CT         -0.071496         0.265688         0.533202         0.00068         -0.001           48         MS         -0.063579         0.017095         0.539         -0.00274         -0                                                                                                                           | 36  | BA    | -0.138225 | -0.081197 | 0.496594  | -0.000001 | -0.00145  |
| 39         LB         -10.149549         1.404412         0.106808         -0.000311         -0.002           40         HA         -0.657751         0.585839         -1.771604         0         -0.000           41         HY         0.210525         -0.159362         -0.414064         -0.003096         -0.000           42         BN         -0.209729         0.014948         0.616257         -0.000564         -0.000           43         WN         -0.209729         0.014948         0.616257         -0.000564         -0.000           44         SU         0.141477         0.003549         0.256765         -0.002978         -0.00           45         YP         -0.001645         0.064815         0.161718         -0.001839         -0.002           46         MG         0.149606         0.032438         0.243666         -0.001259         -0.001           47         CT         -0.071496         0.265688         0.533202         0.00068         -0.001           48         MS         -0.063579         0.017095         0.539         -0.00274         -0.000           49         MV         0.149606         0.032438         0.243666         -0.001259         -0                                                                                                                           | 37  | GA    | -0.138225 | -0.081197 | 0.496594  | -0.000001 | -0.00145  |
| 40         HA         -0.657751         0.585839         -1.771604         0         -0.00           41         HY         0.210525         -0.159362         -0.414064         -0.003096         -0.0003           42         BN         -0.209729         0.014948         0.616257         -0.000564         -0.0003           43         WN         -0.209729         0.014948         0.616257         -0.000564         -0.0003           44         SU         0.141477         0.003549         0.256765         -0.002978         -0.00           45         YP         -0.001645         0.064815         0.161718         -0.001839         -0.002           46         MG         0.149606         0.032438         0.243666         -0.001259         -0.001           47         CT         -0.071496         0.265688         0.533202         0.00068         -0.001           48         MS         -0.063579         0.017095         0.539         -0.00274         -0.000           49         MV         0.149606         0.032438         0.243666         -0.001259         -0.001                                                                                                                                                                                                                                   | 38  | HL    | 0.958763  | 0.823135  | 0.538379  | -0.001181 | -0.002489 |
| 40         HA         -0.657751         0.585839         -1.771604         0         -0.00           41         HY         0.210525         -0.159362         -0.414064         -0.003096         -0.0003           42         BN         -0.209729         0.014948         0.616257         -0.000564         -0.0003           43         WN         -0.209729         0.014948         0.616257         -0.000564         -0.0003           44         SU         0.141477         0.003549         0.256765         -0.002978         -0.00           45         YP         -0.001645         0.064815         0.161718         -0.001839         -0.002           46         MG         0.149606         0.032438         0.243666         -0.001259         -0.001           47         CT         -0.071496         0.265688         0.533202         0.00068         -0.001           48         MS         -0.063579         0.017095         0.539         -0.00274         -0.000           49         MV         0.149606         0.032438         0.243666         -0.001259         -0.001                                                                                                                                                                                                                                   |     | LB    |           |           |           |           | -0.002192 |
| 42         BN         -0.209729         0.014948         0.616257         -0.000564         -0.0005           43         WN         -0.209729         0.014948         0.616257         -0.000564         -0.0005           44         SU         0.141477         0.003549         0.256765         -0.002978         -0.00           45         YP         -0.001645         0.064815         0.161718         -0.001839         -0.002           46         MG         0.149606         0.032438         0.243666         -0.001259         -0.001           47         CT         -0.071496         0.265688         0.533202         0.00068         -0.001           48         MS         -0.063579         0.017095         0.539         -0.00274         -0.000           49         MV         0.149606         0.032438         0.243666         -0.001259         -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40  | HA    | -0.657751 | 0.585839  | -1.771604 | 0         | -0.00077  |
| 42         BN         -0.209729         0.014948         0.616257         -0.000564         -0.0005           43         WN         -0.209729         0.014948         0.616257         -0.000564         -0.0005           44         SU         0.141477         0.003549         0.256765         -0.002978         -0.00           45         YP         -0.001645         0.064815         0.161718         -0.001839         -0.002           46         MG         0.149606         0.032438         0.243666         -0.001259         -0.001           47         CT         -0.071496         0.265688         0.533202         0.00068         -0.001           48         MS         -0.063579         0.017095         0.539         -0.00274         -0.000           49         MV         0.149606         0.032438         0.243666         -0.001259         -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41  | HY    |           |           |           | -0.003096 | -0.000394 |
| 43         WN         -0.209729         0.014948         0.616257         -0.000564         -0.0005           44         SU         0.141477         0.003549         0.256765         -0.002978         -0.00           45         YP         -0.001645         0.064815         0.161718         -0.001839         -0.002           46         MG         0.149606         0.032438         0.243666         -0.001259         -0.001           47         CT         -0.071496         0.265688         0.533202         0.00068         -0.001           48         MS         -0.063579         0.017095         0.539         -0.00274         -0.000           49         MV         0.149606         0.032438         0.243666         -0.001259         -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42  | BN    | -0.209729 | 0.014948  | 0.616257  | -0.000564 | -0.000588 |
| 44         SU         0.141477         0.003549         0.256765         -0.002978         -0.00           45         YP         -0.001645         0.064815         0.161718         -0.001839         -0.002           46         MG         0.149606         0.032438         0.243666         -0.001259         -0.001           47         CT         -0.071496         0.265688         0.533202         0.00068         -0.001           48         MS         -0.063579         0.017095         0.539         -0.00274         -0.000           49         MV         0.149606         0.032438         0.243666         -0.001259         -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43  | WN    |           |           |           |           | -0.000588 |
| 45         YP         -0.001645         0.064815         0.161718         -0.001839         -0.002           46         MG         0.149606         0.032438         0.243666         -0.001259         -0.001           47         CT         -0.071496         0.265688         0.533202         0.00068         -0.001           48         MS         -0.063579         0.017095         0.539         -0.00274         -0.000           49         MV         0.149606         0.032438         0.243666         -0.001259         -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44  | SU    |           |           |           |           | -0.00194  |
| 46         MG         0.149606         0.032438         0.243666         -0.001259         -0.001           47         CT         -0.071496         0.265688         0.533202         0.00068         -0.001           48         MS         -0.063579         0.017095         0.539         -0.00274         -0.000           49         MV         0.149606         0.032438         0.243666         -0.001259         -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45  | YP    | -0.001645 |           |           |           | -0.002217 |
| 47         CT         -0.071496         0.265688         0.533202         0.00068         -0.0010           48         MS         -0.063579         0.017095         0.539         -0.00274         -0.0008           49         MV         0.149606         0.032438         0.243666         -0.001259         -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | MG    |           |           | 0.243666  | -0.001259 | -0.001111 |
| 48         MS         -0.063579         0.017095         0.539         -0.00274         -0.0003           49         MV         0.149606         0.032438         0.243666         -0.001259         -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47  | CT    |           | 0.265688  |           |           | -0.001643 |
| 49 MV 0.149606 0.032438 0.243666 -0.001259 -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48  |       |           |           |           |           | -0.000886 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49  |       |           |           |           | -0.001259 | -0.001111 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50  | ML    |           |           |           |           | -0.000886 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51  | AP    |           |           |           |           | -0.000099 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |           |           |           | -0.000099 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |           |           |           | -0.000262 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |           |           |           | -0.001013 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55  | TS    |           |           |           |           | -0.001185 |
| 56 HH -0.236535 0.201149 -0.208915 -0.003145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |           |           |           |           | 0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |           |           |           | -0.000797 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |           |           |           | -0.000811 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |           |           |           | -0.001608 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |           |           |           | -0.001349 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |           |           |           | -0.001349 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |           |           |           | -0.001904 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |           |           |           | -0.002269 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |           |           |           | -0.001315 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |           |           |           | -0.001913 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |           |           |           | -0.001826 |

| FVS    | Alpha |           | Mod       | lel Coefficien | ts           |              |
|--------|-------|-----------|-----------|----------------|--------------|--------------|
| number | Code  | $\beta_7$ | $\beta_8$ | $\beta_9$      | $\beta_{10}$ | $\beta_{11}$ |
| 67     | TO    | -0.196932 | 0.51463   | -0.033854      | -0.002773    | -0.002901    |
| 68     | LK    | 0.421803  | 0.296509  | 0.381808       | -0.001526    | -0.002253    |
| 69     | OV    | -0.977891 | -0.311322 | 0.427943       | -0.001416    | -0.002636    |
| 70     | BJ    | -0.147407 | 0.241882  | 0.056739       | -0.003558    | -0.001825    |
| 71     | SN    | -0.342161 | 0.077775  | 0.086499       | -0.004171    | -0.001962    |
| 72     | CK    | -0.008808 | 0.471906  | 0.733279       | -0.000299    | -0.001711    |
| 73     | WK    | 0.073469  | -0.165679 | 0.130856       | -0.003479    | -0.001641    |
| 74     | CO    | -0.05605  | 0.003947  | 0.597032       | -0.001112    | -0.001536    |
| 75     | RO    | -0.042528 | 0.110336  | 0.466082       | -0.000908    | -0.001131    |
| 76     | QS    | 0.176391  | 0.069174  | 0.4556         | -0.000482    | -0.002125    |
| 77     | PO    | 0.009165  | 0.054469  | 0.514612       | -0.003306    | -0.001375    |
| 78     | ВО    | -0.033568 | 0.054762  | 0.527504       | -0.002235    | -0.000862    |
| 79     | LO    | -0.1742   | -0.102828 | 0.073672       | -0.003217    | -0.000779    |
| 80     | BK    | -0.084806 | 0.127896  | 0.396699       | -0.001858    | -0.001674    |
| 81     | WI    | -0.083002 | 0.059529  | 0.093966       | 0            | -0.001075    |
| 82     | SS    | -0.021681 | -0.069965 | 0.542693       | -0.002593    | -0.000345    |
| 83     | BW    | 0.235707  | -0.055862 | 0.253525       | -0.001236    | -0.002875    |
| 84     | EL    | -0.064524 | -0.146557 | -0.083383      | -0.003132    | -0.001352    |
| 85     | WE    | 0.272172  | 0.248287  | 0.348136       | -0.002975    | -0.00103     |
| 86     | ΑE    | 0.228712  | 0.069806  | 0.516517       | -0.003114    | -0.001524    |
| 87     | RL    | -0.216082 | 0.037837  | 0.430393       | -0.00133     | -0.002098    |
| 88     | OS    | 0.077542  | -0.025792 | 0.177408       | -0.00362     | -0.00189     |
| 89     | OH    | -0.236535 | 0.201149  | -0.208915      | -0.003145    | 0            |
| 90     | OT    | 0.112883  | 0.158354  | 0.719652       | 0            | -0.002468    |

**Table 4.7.1.2** Default coefficients for the FORTYPE ( $\beta_{12}$ ) categorical variable of the diameter increment model by species for the SN variant.

| FVS    | Alpha | Base           |           |           | Forest T  | ype Group | Codes*    |           |           |
|--------|-------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Number | Code  | <b>FORTYPE</b> | FTLOHD    | FTNOHD    | FTOKPN    | FTSFHP    | FTUPHD    | FTUPOK    | FTYLPN    |
| 1      | FR    | FTUPOK         | 0         | -0.023264 | 0.294886  | -0.271743 | -0.004304 | 0         | 0.039012  |
| 2      | JU    | FTUPOK         | 0.128828  | -0.020186 | 0.054362  | 0         | 0.079239  | 0         | 0.144288  |
| 3      | PI    | FTUPOK         | 0         | -0.023264 | 0.294886  | -0.271743 | -0.004304 | 0         | 0.039012  |
| 4      | PU    | FTYLPN         | 1.214007  | 0         | 0.751229  | 0         | 1.139953  | 0.23948   | 0         |
| 5      | SP    | FTYLPN         | 0.106418  | 0.45502   | 0.017518  | 0         | 0.066811  | -0.040181 | 0         |
| 6      | SA    | FTYLPN         | 0.325861  | 0         | 0.116235  | 0         | 0.16202   | 0.410684  | 0         |
| 7      | SR    | FTLOHD         | 0         | 0         | -0.09895  | 0         | 0.072308  | -0.055071 | -0.236871 |
| 8      | LL    | FTYLPN         | 0.048216  | 0         | 0.088872  | 0         | 0.08672   | 0.106061  | 0         |
| 9      | TM    | FTYLPN         | -0.059007 | 0.325781  | 0.04537   | 0.091999  | -0.004333 | -0.067779 | 0         |
| 10     | PP    | FTUPHD         | 0         | -0.110161 | -0.010394 | 0.043707  | 0         | -0.315855 | 0.116814  |
| 11     | PD    | FTYLPN         | 0.187724  | 0         | 0.044416  | 0         | 0.482241  | 0.296549  | 0         |
| 12     | WP    | FTUPHD         | -0.585211 | -0.062163 | -0.073668 | -0.198969 | 0         | 0.022013  | 0.046063  |
| 13     | LP    | FTYLPN         | 0.126441  | -0.122163 | 0.050835  | 0         | 0.063669  | -0.016885 | 0         |
| 14     | VP    | FTYLPN         | -0.059007 | 0.325781  | 0.04537   | 0.091999  | -0.004333 | -0.067779 | 0         |
| 15     | BY    | FTLOHD         | 0         | -0.050765 | -0.201498 | 0         | 0.19488   | 0.081554  | -0.324291 |
| 16     | PC    | FTLOHD         | 0         | 0         | -0.196837 | 0         | 0         | 0         | -0.24176  |
| 17     | НМ    | FTUPOK         | 0         | -0.023264 | 0.294886  | -0.271743 | -0.004304 | 0         | 0.039012  |
| 18     | FM    | FTLOHD         | 0         | -0.581137 | -0.049388 | 0         | -0.021913 | -0.323458 | 0.304165  |
| 19     | BE    | FTLOHD         | 0         | 0.197314  | -0.002307 | -0.361488 | 0.213336  | -0.003385 | -0.252234 |
| 20     | RM    | FTLOHD         | 0         | -0.008575 | -0.091712 | -0.2265   | -0.115718 | -0.233899 | -0.000042 |
| 21     | SV    | FTLOHD         | 0         | -0.008575 | -0.091712 | -0.2265   | -0.115718 | -0.233899 | -0.000042 |
| 22     | SM    | FTUPOK         | 0.177698  | 0.081088  | -0.00783  | 0.268289  | 0.018085  | 0         | -0.969059 |

Page 62 of 241

| FVS      | Alpha    | Base    |           |           | Forest T       | ype Group | Codes*                 |           |           |
|----------|----------|---------|-----------|-----------|----------------|-----------|------------------------|-----------|-----------|
| Number   | Code     | FORTYPE | FTLOHD    | FTNOHD    | FTOKPN         | FTSFHP    | FTUPHD                 | FTUPOK    | FTYLPN    |
| 23       | BU       | FTNOHD  | 0.276485  | 0         | 0              | 0         | -0.158379              | -0.066001 | 0         |
| 24       | BB       | FTLOHD  | 0         | -0.090106 | -0.211483      | -0.11285  | -0.150287              | -0.229603 | -0.122245 |
| 25       | SB       | FTLOHD  | 0         | -0.090106 | -0.211483      | -0.11285  | -0.150287              | -0.229603 | -0.122245 |
| 26       | AH       | FTLOHD  | 0         | 0.107053  | -0.184779      | 0.11200   | -0.144979              | -0.125931 | -0.023984 |
| 27       | HI       | FTUPOK  | 0.307092  | 0.127121  | 0.075082       | 0.163686  | 0.145813               | 0.120301  | 0.091028  |
| 28       | CA       | FTLOHD  | 0         | 0.127.121 | -0.122639      | 0.100000  | -0.227215              | 0.428371  | -0.127654 |
| 29       | HB       | FTLOHD  | 0         | -0.020917 | -0.227013      | 0         | -0.0466                | -0.142184 | -0.37316  |
| 30       | RD       | FTUPHD  | -0.131762 | -0.159125 | 0.081533       | 0         | 0.0100                 | -0.091293 | 0.005318  |
| 31       | DW       | FTUPOK  | 0.193678  | 0.080191  | 0.22776        | -0.207255 | 0.123444               | 0.031230  | 0.395749  |
| 32       | PS       | FTYLPN  | 0.140335  | 0.008246  | -0.030083      | 0.207200  | 0.064726               | -0.063738 | 0.0007 40 |
| 33       | AB       | FTUPOK  | 0.139891  | 0.094979  | 0.112394       | 0.191476  | 0.098473               | 0.003730  | 0.301892  |
| 34       | AS       | FTLOHD  | 0.100001  | 0.065051  | -0.006241      | 0.243386  | 0.009788               | -0.041769 | -0.049053 |
| 35       | WA       | FTUPOK  | 0.112081  | 0.244086  | -0.042491      | 0.24000   | 0.199271               | 0.041700  | 0.256243  |
| 36       | BA       | FTLOHD  | 0.112001  | 0.003456  | -0.108803      | 0         | -0.01864               | -0.08551  | -0.27944  |
| 37       | GA       | FTLOHD  | 0         | 0.003456  | -0.108803      | 0         | -0.01864               | -0.08551  | -0.27944  |
| 38       | HL       | FTLOHD  | 0         | 0.003430  | -0.108803      | 0         | -0.170453              | -0.17868  | -0.343244 |
| 39       | LB       | FTLOHD  |           | 0         |                | 0         |                        |           |           |
| 40       | HA       | FTUPOK  | 0         | -0.063207 | -0.063217<br>0 | 0         | -0.297261<br>-0.111645 | 0         | 0.065035  |
| 41       | HY       | FTLOHD  |           |           |                | 0         |                        |           | _         |
| 42       | BN       | FTUPHD  | 0 400740  | -0.003095 | -0.007689      |           | -0.082245              | -0.187742 | -0.008297 |
| 43       | WN       | FTUPHD  | 0.163749  | -0.176854 | -0.164651      | -0.557302 | 0                      | -0.156488 | -0.23263  |
| 44       | SU       | FTLOHD  | 0.163749  | -0.176854 | -0.164651      | -0.557302 | 0 455004               | -0.156488 | -0.23263  |
| 45       | YP       | FTUPHD  | 0 000004  | 0.057604  | -0.090836      | 0.491153  | -0.155894              | -0.168272 | 0.058458  |
| 46       | MG       | FTLOHD  | 0.083904  | 0.057388  | -0.055234      | -0.499954 | 0 000500               | -0.090655 | 0.053935  |
| 47       | CT       | FTUPOK  | 0 005004  | -0.326815 | -0.017682      | 0         | -0.029526              | -0.096994 | -0.031043 |
| 48       | MS       | FTLOHD  | -0.295834 | 0.049636  | -0.353219      | 0.004670  | 0.008351               | 0.400570  | -0.627226 |
| 49       | MV       | FTLOHD  | 0         | -0.153348 | 0.183663       | -0.024673 | 0.055907               | 0.109578  | 0.052422  |
| 50       |          | FTLOHD  | 0         | -0.326815 | -0.017682      | 0 004070  | -0.029526              | -0.096994 | -0.031043 |
| 51       | ML<br>AP | FTLOHD  | 0         | -0.153348 | 0.183663       | -0.024673 | 0.055907               | 0.109578  | 0.052422  |
| 52       |          |         | 0         | -0.357484 | 0.01002        | 0         | -0.023979              | -0.02495  | 0.272524  |
|          | MB       | FTLOHD  | 0         | -0.357484 | 0.01002        | 0         | -0.023979              | -0.02495  | 0.272524  |
| 53<br>54 | WT       | FTLOHD  | 0         | 0         | -0.203627      | 0         | 0.066993               | 0.696768  | 0.045531  |
|          | BG<br>TS | FTUPOK  | 0.114656  | 0.063092  | 0.076702       | -0.447981 | 0.111483               | 0         | 0.22918   |
| 55<br>56 |          | FTLOHD  | 0         | 0.580807  | -0.116496      | 0         | -0.11074               | -0.195302 | 0.006188  |
| 56       | HH       | FTLOHD  | 0         | -0.154634 | -0.087145      | 0         | -0.071133              | -0.204189 | 0.120468  |
| 57       | SD       | FTUPOK  | 0.076657  | 0.352409  | 0.079881       | -0.131538 | -0.023003              | 0         | 0.300435  |
| 58       | RA       | FTLOHD  | 0         | -1.199357 | -0.022774      | 0         | 0.060206               | 0.390875  | -0.045807 |
| 59       | SY       | FTLOHD  | 0         | -0.019656 | -0.262507      | 0         | -0.150643              | -0.161551 | -0.239422 |
| 60       | CW       | FTLOHD  | 0         | 0         | -0.122639      | 0         | -0.227215              | 0.428371  | -0.127654 |
| 61       | BT       | FTLOHD  | 0         | 0         | -0.122639      | 0         | -0.227215              | 0.428371  | -0.127654 |
| 62       | BC       | FTUPOK  | 0.181563  | 0.303382  | 0.162524       | 0         | 0.146052               | 0         | 0.203538  |
| 63       | WO       | FTUPOK  | 0.214921  | 0.196181  | 0.106951       | 0.210088  | 0.100081               | 0         | 0.154886  |
| 64       | SO       | FTUPOK  | 0.081994  | 0.17408   | 0.073767       | -0.126888 | 0.089055               | 0         | 0.015718  |
| 65       | SK       | FTUPOK  | 0.148989  | 0.201455  | 0.055742       | 0         | 0.06846                | 0         | 0.047989  |
| 66       | CB       | FTLOHD  | 0         | 0.130043  | -0.065943      | 0         | -0.066026              | -0.114309 | -0.023093 |
| 67       | TO       | FTUPOK  | -0.049627 | 0         | 0.167384       | 0         | 0.09929                | 0         | 0.184647  |
| 68       | LK       | FTLOHD  | 0         | -0.127737 | 0.029504       | 0         | -0.053091              | 0.012219  | 0.03069   |
| 69       | OV       | FTLOHD  | 0         | -0.924265 | -0.183514      | 0         | -0.083244              | -0.057771 | -0.076588 |
| 70       | BJ       | FTUPOK  | -0.123167 | 0         | 0.000279       | 0         | 0.170335               | 0         | -0.096186 |

| FVS    | Alpha | Base           |           |           | Forest T  | ype Group | Codes*    |           |           |
|--------|-------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Number | Code  | <i>FORTYPE</i> | FTLOHD    | FTNOHD    | FTOKPN    | FTSFHP    | FTUPHD    | FTUPOK    | FTYLPN    |
| 71     | SN    | FTLOHD         | 0         | -0.28634  | 0.07676   | 0         | 0.037457  | 0.010126  | 0.088233  |
| 72     | CK    | FTUPOK         | 0.086112  | 0.035396  | 0.021275  | 0         | 0.111528  | 0         | -0.518898 |
| 73     | WK    | FTLOHD         | 0         | 0.044529  | -0.042926 | 0         | -0.088049 | -0.08591  | -0.068603 |
| 74     | CO    | FTUPOK         | 0.237228  | 0.136033  | 0.030761  | -0.23819  | 0.096751  | 0         | 0.053589  |
| 75     | RO    | FTUPOK         | 0.103731  | 0.207951  | 0.010721  | -0.023986 | 0.138142  | 0         | 0.052338  |
| 76     | QS    | FTUPOK         | 0.139953  | 0.207603  | 0.009285  | 0         | 0.13252   | 0         | 0.219845  |
| 77     | PO    | FTUPOK         | 0.268975  | 0.482744  | 0.042786  | 0         | 0.090618  | 0         | 0.056597  |
| 78     | ВО    | FTUPOK         | 0.049693  | 0.272007  | 0.034224  | -0.104624 | 0.071804  | 0         | -0.044373 |
| 79     | LO    | FTLOHD         | 0         | 0         | 0.074099  | 0         | 0.061718  | 0.229807  | -0.043042 |
| 80     | BK    | FTUPHD         | 0.138241  | 0.117354  | -0.097572 | 0         | 0         | -0.083039 | -0.046524 |
| 81     | WI    | FTLOHD         | 0         | 0         | 0.001536  | 0         | 0.019648  | 0.165022  | -0.001371 |
| 82     | SS    | FTUPHD         | -0.058475 | 0.013995  | -0.139506 | 0.414214  | 0         | -0.166983 | -0.018172 |
| 83     | BW    | FTNOHD         | 0.067203  | 0         | 0.008236  | 0         | -0.033491 | 0.012197  | 0.14852   |
| 84     | EL    | FTLOHD         | 0         | -0.005493 | -0.263842 | 0         | -0.054579 | -0.202033 | 0.071996  |
| 85     | WE    | FTUPOK         | 0.211919  | 0.11261   | 0.174149  | 0         | 0.168458  | 0         | 0.364012  |
| 86     | AE    | FTLOHD         | 0         | -0.221068 | -0.019557 | 0         | -0.210607 | -0.237209 | 0.137175  |
| 87     | RL    | FTLOHD         | 0         | -0.23243  | -0.086137 | 0         | -0.073558 | -0.242294 | 0.177563  |
| 88     | OS    | FTUPOK         | 0.128828  | -0.020186 | 0.054362  | 0         | 0.079239  | 0         | 0.144288  |
| 89     | ОН    | FTLOHD         | 0         | -0.154634 | -0.087145 | 0         | -0.071133 | -0.204189 | 0.120468  |
| 90     | OT    | NONE           | 0         | 0         | 0         | 0         | 0         | 0         | 0         |

<sup>\*</sup> Forest Type Group Code definitions are as follows:

FTLOHD = Lowland Hardwoods, forest cover types: 168, 508, 601, 602, 605, 606, 607, 608, 702, 703, 704, 705, 706, 708

FTNOHD = Northern Hardwoods, forest cover types: 701, 801, 805

FTOKPN = Oak - Pine, forest cover types:165, 403, 404, 405, 406, 407, 409

FTSFHP = Spruce – Fir – Hemlock – Pine, forest cover types: 104, 105, 121, 124

FTUPHD = Upland Hardwoods, forest cover types: 103, 167, 181, 401, 402, 506, 511, 512, 513, 519,

520, 802, 807, 809

FTUPOK = Upland Oak, forest cover types: 501, 502, 503, 504, 505, 510, 514, 515 FTYLPN = Yellow Pine, forest cover types: 141, 142, 161, 162, 163, 164, 166

**Table 4.7.1.3** Default coefficients for the *ECOUNIT* ( $\beta_{13}$ ) categorical variable of the diameter increment model by species for the SN variant.

| FVS    | Alpha | Base           |           |           | Model Co  | efficients |           |           |
|--------|-------|----------------|-----------|-----------|-----------|------------|-----------|-----------|
| number | Code  | <b>ECOUNIT</b> | M221      | M222      | M231      | 221        | 222       | 231A      |
| 1      | FR    | M221           | 0         | 0         | 0         | -0.121082  | 0         | 0.022498  |
| 2      | JU    | P231A          | 0.131771  | 0.217904  | 0.436986  | 0.083896   | -0.005539 | 0         |
| 3      | PI    | M221           | 0         | 0         | 0         | -0.121082  | 0         | 0.022498  |
| 4      | PU    | P232           | 0         | 0         | 0         | 0          | 0         | 0         |
| 5      | SP    | P231B          | -0.569409 | -0.252741 | -0.265699 | -0.694484  | -0.285112 | -0.504565 |
| 6      | SA    | P232           | 0         | 0         | 0         | 0          | 0         | -0.025549 |
| 7      | SR    | P232           | 0         | 0         | 0         | 0          | 0         | 0         |
| 8      | LL    | P232           | 0         | 0         | 0         | 0          | 0         | -0.175073 |
| 9      | TM    | P231A          | -0.157516 | 0         | 0         | -0.107642  | -0.034553 | 0         |
| 10     | PP    | M221           | 0         | 0         | 0         | 0.020105   | -0.297952 | 0.236656  |
| 11     | PD    | P232           | 0         | 0         | 0         | 0          | 0         | 0         |
| 12     | WP    | M221           | 0         | 0         | 0         | -0.06563   | -0.450665 | 0.102041  |
| 13     | LP    | P232           | -0.069716 | 0.581967  | 0.790149  | -0.584818  | -0.364073 | -0.183317 |
| 14     | VP    | P231A          | -0.157516 | 0         | 0         | -0.107642  | -0.034553 | 0         |
| 15     | BY    | P232           | 0         | 0         | 0         | 0          | 0.230225  | 0.457755  |
| 16     | PC    | P232           | 0         | 0         | 0         | 0          | 0         | 0         |
| 17     | HM    | M221           | 0         | 0         | 0         | -0.121082  | 0         | 0.022498  |

| FVS    | Alpha | Base           |           |           | Model Co  | efficients |           |           |
|--------|-------|----------------|-----------|-----------|-----------|------------|-----------|-----------|
| number | Code  | ECOUNIT        | M221      | M222      | M231      | 221        | 222       | 231A      |
| 18     | FM    | P231A          | 0         | 0.044974  | -0.121719 | 0          | 0.289979  | 0         |
| 19     | BE    | P234           | -0.202911 | -0.354429 | 0.37115   | -0.282925  | -0.250799 | -0.351211 |
| 20     | RM    | P232           | -0.010003 | -0.15782  | -0.04678  | 0.171661   | 0.170429  | -0.031739 |
| 21     | SV    | P232           | -0.010003 | -0.15782  | -0.04678  | 0.171661   | 0.170429  | -0.031739 |
| 22     | SM    | P222           | -0.074887 | -0.21626  | 0         | 0.064792   | 0         | -0.207182 |
| 23     | BU    | M221           | 0         | 0         | 0         | 0.168179   | 0.024888  | 0.029753  |
| 24     | BB    | M221           | 0         | 0.379877  | -0.528365 | 0.30676    | 0.167634  | 0.178981  |
| 25     | SB    | M221           | 0         | 0.379877  | -0.528365 | 0.30676    | 0.167634  | 0.178981  |
| 26     | AH    | P232           | -0.260665 | -0.170424 | -0.314804 | -0.11468   | 0.04355   | -0.090864 |
| 27     | HI    | P231A          | 0.03407   | -0.221662 | -0.17272  | 0.04251    | -0.012725 | 0         |
| 28     | CA    | P234           | 0         | 0         | 0         | 0          | -0.010636 | -0.380297 |
| 29     | НВ    | P234           | -0.435211 | -0.117993 | -0.495339 | -0.347813  | -0.336521 | -0.32578  |
| 30     | RD    | P231A          | 0.147356  | 0.184427  | -0.070292 | 0.281057   | 0.322736  | 0         |
| 31     | DW    | P231A          | 0.101205  | 0.352912  | 0.166296  | 0.233779   | 0.104553  | 0         |
| 32     | PS    | P232           | 0.111933  | -0.023333 | 0.289483  | 0.480859   | 0.215139  | -0.049742 |
| 33     | AB    | P232           | -0.191377 | -0.370162 | -0.181571 | -0.105676  | 0.093229  | 0.006941  |
| 34     | AS    | P232           | 0.424837  | 0         | 0         | -0.181787  | 0         | 0.073246  |
| 35     | WA    | P222           | -0.082465 | -0.149061 | -0.241677 | -0.146698  | 0         | -0.208643 |
| 36     | BA    | P234           | 0.1469    | -0.443396 | -0.448423 | -0.133024  | -0.079056 | -0.119819 |
| 37     | GA    | P234           | 0.1469    | -0.443396 | -0.448423 | -0.133024  | -0.079056 | -0.119819 |
| 38     | HL    | P234           | -0.256637 | -0.149473 | 0.04739   | -0.34169   | -0.215198 | -0.396963 |
| 39     | LB    | P232           | 0         | 0         | 0         | 0.01100    | 0         | 0         |
| 40     | HA    | M221           | 0         | 0         | 0         | 0          | 0         | -0.211742 |
| 41     | HY    | P232           | -0.126229 | 0         | 0         | -0.278119  | -0.179796 | 0.019636  |
| 42     | BN    | P222           | -0.071073 | 0.374367  | -0.05879  | -0.072556  | 0.173730  | -0.015672 |
| 43     | WN    | P222           | -0.071073 | 0.374367  | -0.05879  | -0.072556  | 0         | -0.015672 |
| 44     | SU    | P232           | 0.214847  | -0.027123 | -0.098745 | 0.311384   | 0.203471  | -0.034773 |
| 45     | YP    | P231A          | -0.035012 | 0.027 120 | 0.030740  | 0.114831   | 0.255257  | 0.004770  |
| 46     | MG    | P232           | -1.72121  | 0         | 0         | -0.438669  | 0.233237  | -0.316872 |
| 47     | CT    | M221           | 0         | -0.333954 | 0         | 0.326227   | -0.158005 | -0.089037 |
| 48     | MS    | P232           | -0.184013 | -0.708021 | 0         | -0.947356  | 0.100000  | -0.256347 |
| 49     | MV    | P232           | -1.72121  | 0.700021  | 0         | -0.438669  | 0         | -0.316872 |
| 50     | ML    | P232           | -0.184013 | -0.708021 | 0         | -0.947356  | 0         | -0.256347 |
| 51     | AP    | P231B          | 0.352576  | 0.128982  | 0.243569  | 0.26906    | 0.000219  | -0.25349  |
| 52     | MB    | P231B          | 0.352576  | 0.128982  | 0.243569  | 0.26906    | 0.000219  | -0.25349  |
| 53     | WT    | P232           | 0.332370  | 0.120302  | 0.243309  | 0.20300    | 0.000219  | -1.048379 |
| 54     | BG    | P232           | -0.014903 | -0.266804 | -0.251634 | -0.000477  | 0.058798  | -0.116789 |
| 55     | TS    | P232           | 0.014303  | 0.200004  | 0.231034  | 0.000477   | 0.030730  | 0.01815   |
| 56     | HH    | P232           | -0.041534 | 0.13042   | 0.212883  | 0.110701   | -0.130543 | -0.02585  |
| 57     | SD    | P231A          | 0.012432  | 0.13042   | 0.212003  | 0.160384   | 0.079502  | 0.02303   |
| 58     | RA    | P232           | 0.012432  | 0         | 0         | 0.100304   | 0.073502  | 0         |
| 59     | SY    | P234           | -0.308437 | -0.468897 | -0.573635 | -0.163987  | -0.291934 | -0.312825 |
| 60     | CW    | P234           | 0.300437  | 0.400037  | 0.573033  | 0.103307   | -0.231334 | -0.380297 |
| 61     | BT    | P234           | 0         | 0         | 0         | 0          | -0.010636 | -0.380297 |
| 62     | BC    | P234<br>P231A  | 0.290593  | 0.163528  | -0.111387 | 0.060201   | 0.089278  | -0.360297 |
| 63     | WO    | P231A<br>P231A | -0.191164 | -0.155148 | -0.111367 | -0.063321  | -0.031876 | 0         |
| 64     | SO    | P231A<br>P231A | -0.191104 | -0.133146 | -0.154994 | -0.063321  | -0.031676 | 0         |
| 65     | SK    | P231A<br>P231B | -0.294531 | -0.267829 | -0.113549 | -0.063421  | -0.023554 | -0.142921 |
| 66     | CB    |                |           |           | -0.113549 |            |           |           |
| 67     | TO    | P231B          | -0.303022 | -0.568197 |           | -0.301395  | -0.106435 | -0.139157 |
| 68     | LK    | P232           | 0         | 0         | 0         | 0          | 0         | -0.141504 |
|        | OV    | P232           | 0         | 0         | 0 506925  | 0          | 0 074003  | -0.18474  |
| 69     |       | P234           | 0 172592  | 0 107272  | -0.506825 | 0 127102   | 0.074902  | -0.083491 |
| 70     | BJ    | P232           | -0.172582 | 0.107373  | -0.084775 | 0.127193   | -0.066699 | -0.052485 |
| 71     | SN    | P232           | -0.25241  | 0         | -0.27847  | -0.201638  | 0.222377  | -0.053375 |

| FVS    | Alpha | Base    |           |           | Model Co  | efficients |           |           |
|--------|-------|---------|-----------|-----------|-----------|------------|-----------|-----------|
| number | Code  | ECOUNIT | M221      | M222      | M231      | 221        | 222       | 231A      |
| 72     | CK    | P222    | -0.039862 | -0.110433 | -0.170239 | 0.024645   | 0         | 0.126865  |
| 73     | WK    | P232    | 0.197053  | 0.108061  | -0.061415 | -0.343207  | -0.056293 | -0.113493 |
| 74     | CO    | M221    | 0         | 0         | 0         | 0.15138    | 0.200026  | 0.204279  |
| 75     | RO    | M221    | 0         | 0.023769  | 0.058308  | 0.043448   | 0.036206  | 0.132129  |
| 76     | QS    | P231B   | -0.854641 | -0.590369 | -0.160338 | -0.190715  | -0.329148 | -0.237106 |
| 77     | РО    | P231B   | -0.042633 | -0.25256  | -0.243734 | -0.162999  | -0.160463 | -0.048463 |
| 78     | ВО    | P222    | -0.122266 | -0.144853 | -0.16313  | 0.021869   | 0         | -0.048649 |
| 79     | LO    | P232    | 0         | 0         | 0         | 0          | 0         | 0         |
| 80     | BK    | M221    | 0         | -0.174431 | 0.170467  | 0.016664   | 0.035772  | 0.047888  |
| 81     | WI    | P234    | -0.316154 | 0         | 0         | -0.36058   | 0.031358  | 0.151013  |
| 82     | SS    | P222    | -0.109616 | 0.068664  | -0.981901 | -0.066394  | 0         | -0.153195 |
| 83     | BW    | M221    | 0         | 0.022312  | 0.378775  | 0.195305   | 0.106462  | -0.145798 |
| 84     | EL    | P231A   | 0.340206  | -0.330585 | 0.261703  | 0.431384   | -0.107188 | 0         |
| 85     | WE    | P231B   | 0.11777   | -0.235842 | -0.43592  | -0.036156  | -0.229106 | 0.125704  |
| 86     | AE    | P234    | -0.312702 | -0.097041 | -0.361568 | -0.127373  | -0.293653 | -0.413743 |
| 87     | RL    | P231B   | -0.167102 | -0.292978 | 0.084842  | -0.229308  | -0.287173 | -0.014656 |
| 88     | OS    | P231A   | 0.131771  | 0.217904  | 0.436986  | 0.083896   | -0.005539 | 0         |
| 89     | OH    | P232    | -0.041534 | 0.13042   | 0.212883  | 0.110701   | -0.130543 | -0.02585  |
| 90     | OT    | NONE    | 0         | 0         | 0         | 0          | 0         | 0         |

<sup>\*</sup> Provincial code 231A includes sections A, C, and D. Provincial code 231B includes sections B, E, F, and G.

| FVS    | Alpha | Base           |           | Mode      | el Coefficien | ıts       |           |
|--------|-------|----------------|-----------|-----------|---------------|-----------|-----------|
| number | Code  | <b>ECOUNIT</b> | 231B      | 232       | 234           | 255       | 411       |
| 1      | FR    | M221           | -0.097721 | 0         | 0             | 0         | 0         |
| 2      | JU    | P231A          | 0.49074   | 0.399497  | 0.938548      | 1.088152  | 0         |
| 3      | PI    | M221           | -0.097721 | 0         | 0             | 0         | 0         |
| 4      | PU    | P232           | 0         | 0         | 0             | 0         | 0         |
| 5      | SP    | P231B          | 0         | -0.113258 | 0.114097      | 0.092458  | 0         |
| 6      | SA    | P232           | 0.324111  | 0         | 0.306793      | 0         | -0.342293 |
| 7      | SR    | P232           | -0.155764 | 0         | -0.112223     | 0         | 0         |
| 8      | LL    | P232           | -0.067793 | 0         | 0.123262      | 0         | 0         |
| 9      | TM    | P231A          | 0.025073  | -0.150946 | 0             | 0         | 0         |
| 10     | PP    | M221           | 0         | 0         | 0             | 0         | 0         |
| 11     | PD    | P232           | 0         | 0         | 0             | 0         | -0.205608 |
| 12     | WP    | M221           | 0         | 0         | 0             | 0         | 0         |
| 13     | LP    | P232           | 0.256273  | 0         | 0.28179       | 0.274618  | 0         |
| 14     | VP    | P231A          | 0.025073  | -0.150946 | 0             | 0         | 0         |
| 15     | BY    | P232           | 0.154525  | 0         | 0.021935      | 0.288209  | -0.033047 |
| 16     | PC    | P232           | 0         | 0         | 0             | 0         | 0.156623  |
| 17     | НМ    | M221           | -0.097721 | 0         | 0             | 0         | 0         |
| 18     | FM    | P231A          | 0.416909  | 0.163106  | 0.451765      | 0         | 0         |
| 19     | BE    | P234           | -0.15656  | -0.233523 | 0             | -0.011673 | 0         |
| 20     | RM    | P232           | 0.111637  | 0         | 0.283893      | 0         | -0.340066 |
| 21     | SV    | P232           | 0.111637  | 0         | 0.283893      | 0         | -0.340066 |
| 22     | SM    | P222           | -0.145892 | 0.70785   | 0.28978       | 0         | 0         |
| 23     | BU    | M221           | 0         | 0         | 0             | 0         | 0         |
| 24     | BB    | M221           | 0.365419  | 0.236959  | 0.417591      | 1.151813  | 0         |
| 25     | SB    | M221           | 0.365419  | 0.236959  | 0.417591      | 1.151813  | 0         |
| 26     | AH    | P232           | 0.087924  | 0         | 0.215406      | 0         | 0         |
| 27     | HI    | P231A          | 0.116846  | 0.113816  | 0.183886      | 0.441744  | 0         |
| 28     | CA    | P234           | -0.091346 | -0.145951 | 0             | -0.227224 | 0         |
| 29     | HB    | P234           | -0.130359 | -0.212093 | 0             | -0.208957 | 0         |
| 30     | RD    | P231A          | 0.452072  | 0.552309  | 0.255957      | 0.576422  | 0         |
| 31     | DW    | P231A          | 0.359721  | 0.093627  | 0.488202      | 0         | 0<br>Pag  |

| FVS    | Alpha | Base          |           | Mode                  | el Coefficier        | nts                   |           |
|--------|-------|---------------|-----------|-----------------------|----------------------|-----------------------|-----------|
| number | Code  | ECOUNIT       | 231B      | 232                   | 234                  | 255                   | 411       |
| 32     | PS    | P232          | 0.24935   | 0                     | 0.363787             | 0.31787               | 0         |
| 33     | AB    | P232          | -0.003611 | 0                     | -0.031277            | 0                     | 0         |
| 34     | AS    | P232          | 0         | 0                     | 0                    | 0                     | -0.795646 |
| 35     | WA    | P222          | -0.015617 | -0.004213             | 0.151449             | -0.056292             | 0         |
| 36     | ВА    | P234          | -0.116966 | -0.075746             | 0                    | -0.003469             | 0         |
| 37     | GA    | P234          | -0.116966 | -0.075746             | 0                    | -0.003469             | 0         |
| 38     | HL    | P234          | 0.095929  | -0.078848             | 0                    | 0.115297              | 0         |
| 39     | LB    | P232          | 0         | 0                     | 0                    | 0                     | 0         |
| 40     | HA    | M221          | 0         | 0                     | 0                    | 0                     | 0         |
| 41     | HY    | P232          | 0.163182  | 0                     | -0.283774            | 0.941544              | 0         |
| 42     | BN    | P222          | 0.349608  | 0.255119              | 0.259162             | 0.352483              | 0         |
| 43     | WN    | P222          | 0.349608  | 0.255119              | 0.259162             | 0.352483              | 0         |
| 44     | SU    | P232          | 0.115389  | 0                     | 0.129382             | 0.492438              | 0         |
| 45     | ΥP    | P231A         | 0.095383  | 0.113058              | 0.11154              | 0                     | 0         |
| 46     | MG    | P232          | 0.014928  | 0                     | 0.161649             | 0                     | 0         |
| 47     | CT    | M221          | 0.587498  | 0.575938              | 0.572974             | 0                     | 0         |
| 48     | MS    | P232          | -0.181586 | 0                     | 0.493509             | 0                     | 0         |
| 49     | MV    | P232          | 0.014928  | 0                     | 0.161649             | 0                     | 0         |
| 50     | ML    | P232          | -0.181586 | 0                     | 0.493509             | 0                     | 0         |
| 51     | AP    | P231B         | 0         | -0.119399             | 0.032415             | 0.498573              | 0         |
| 52     | MB    | P231B         | 0         | -0.119399             | 0.032415             | 0.498573              | 0         |
| 53     | WT    | P232          | 0.031801  | 0                     | -0.054588            | 0                     | 0         |
| 54     | BG    | P232          | 0.138867  | 0                     | -0.031436            | 0.37582               | 0         |
| 55     | TS    | P232          | 0.688179  | 0                     | 0.202859             | 0.07002               | 0         |
| 56     | HH    | P232          | 0.087497  | 0                     | 0.018385             | 0.255056              | 0         |
| 57     | SD    | P231A         | 0.295282  | 0.057285              | 0.424776             | 0.20000               | 0         |
| 58     | RA    | P232          | 0.712083  | 0.007200              | 0.489307             | 0                     | -0.1476   |
| 59     | SY    | P234          | -0.20443  | -0.167438             | 0.100007             | 0.12295               | 0.1176    |
| 60     | CW    | P234          | -0.091346 | -0.145951             | 0                    | -0.227224             | 0         |
| 61     | BT    | P234          | -0.091346 | -0.145951             | 0                    | -0.227224             | 0         |
| 62     | BC    | P231A         | 0.23992   | 0.12589               | 0.264833             | 1.90134               | 0         |
| 63     | WO    | P231A         | 0.16471   | 0.031862              | 0.089972             | 0.448682              | 0         |
| 64     | SO    | P231A         | 0.067643  | 0.087098              | 0.003372             | 0.440002              | 0         |
| 65     | SK    | P231B         | 0.007040  | -0.137069             | 0.044499             | 0.189435              | 0         |
| 66     | CB    | P231B         | 0         | 0.000058              | -0.035715            | -0.198361             | 0         |
| 67     | TO    | P232          | 0.987526  | 0.000030              | 1.109686             | 1.446041              | 0         |
| 68     | LK    | P232          | 0.183278  | 0                     | 0.238162             | 0.768121              | -1.32854  |
| 69     | OV    | P234          | 0.045341  | 0.062981              | 0.230102             | -0.065887             | 0         |
| 70     | BJ    | P232          | 0.178459  | 0.002301              | -0.037201            | 0.380348              | -0.741911 |
| 71     | SN    | P232          | 0.006612  | 0                     | 0.0076               | 0.300340              | 0.741311  |
| 72     | CK    | P222          | -0.010615 | 0.755389              | 0.471921             | 0.606309              | 0         |
| 73     | WK    | P232          | 0.076125  | 0.733303              | 0.122936             | 0.249718              | -0.26175  |
| 74     | CO    | M221          | 0.295079  | 0.085617              | 0.080911             | 0.585065              | 0.20173   |
| 75     | RO    | M221          | 0.163239  | 0.205401              | 0.433254             | 0.303003              | 0         |
| 76     | QS    | P231B         | 0.103239  | -0.089086             | -0.19085             | -0.03683              | 0         |
| 77     | PO    | P231B         | 0         |                       |                      |                       |           |
| 78     | BO    | P231B<br>P222 | 0.151382  | -0.081158<br>0.084829 | 0.159575<br>0.369759 | 0.171401<br>-0.051983 | 0         |
| 79     | LO    | P232          | 0.151362  | 0.064629              | 0.369759             | -0.051963             | -0.639461 |
| 80     | BK    | M221          |           | 0.171124              |                      | 0.444606              | _         |
| 81     | WI    |               | 0.371885  |                       | 0.240479             |                       | 0         |
| 82     | SS    | P234          | -0.120265 | -0.059706             | 0 333063             | -0.203095             | 0         |
|        | BW    | P222          | 0.075592  | -0.040417             | 0.333962             | 0.393517              | 0         |
| 83     |       | M221          | -0.155027 | -0.071987             | 0.920288             | 0.644926              | 0         |
| 84     | EL    | P231A         | 0.045265  | 0.036098              | -0.31894             | 0.270984              | 0         |
| 85     | WE    | P231B         | 0         | 0.070072              | -0.022479            | 0.23536               | 0         |

| FVS    | Alpha | Base           | Model Coefficients |           |          |           |     |
|--------|-------|----------------|--------------------|-----------|----------|-----------|-----|
| number | Code  | <b>ECOUNIT</b> | 231B               | 232       | 234      | 255       | 411 |
| 86     | AE    | P234           | -0.127535          | -0.043112 | 0        | 0.11986   | 0   |
| 87     | RL    | P231B          | 0                  | -0.029868 | 0.210046 | -0.360256 | 0   |
| 88     | os    | P231A          | 0.49074            | 0.399497  | 0.938548 | 1.088152  | 0   |
| 89     | ОН    | P232           | 0.087497           | 0         | 0.018385 | 0.255056  | 0   |
| 90     | OT    | NONE           | 0                  | 0         | 0        | 0         | 0   |

**Table 4.7.1.4** Default coefficients for the *PLANT* ( $\beta_{14}$ ) categorical variable of the diameter increment model by species for the SN variant.

| <u> </u> |       |              |  |  |  |
|----------|-------|--------------|--|--|--|
| FVS      | Alpha |              |  |  |  |
| Number   | Code  | $\beta_{14}$ |  |  |  |
| 4        | PU    | 0.173758     |  |  |  |
| 6        | SA    | 0.227572     |  |  |  |
| 8        | LL    | 0.110751     |  |  |  |
| 12       | WP    | 0.098090     |  |  |  |
| 13       | LP    | 0.245669     |  |  |  |

**Table 4.7.1.5** Default  $DBH_{LOW}$  and  $DBH_{HI}$  values by species in the SN variant.

| FVS    | Alpha |                    |                   |  |
|--------|-------|--------------------|-------------------|--|
| Number | Code  | DBH <sub>LOW</sub> | DBH <sub>HI</sub> |  |
| 1      | FR    | 12.0               | 26.0              |  |
| 2      | JU    | 11.9               | 24.1              |  |
| 3      | PI    | 12.0               | 38.0              |  |
| 4      | PU    | 12.5               | 18.9              |  |
| 5      | SP    | 15.3               | 27.9              |  |
| 6      | SA    | 14.0               | 27.4              |  |
| 7      | SR    | 20.7               | 32.6              |  |
| 8      | ᅵ     | 15.9               | 24.4              |  |
| 9      | TM    | 13.7               | 18.7              |  |
| 10     | PP    | 15.8               | 24.2              |  |
| 11     | PD    | 15.3               | 28.7              |  |
| 12     | WP    | 20.6               | 32.9              |  |
| 13     | LP    | 17.1               | 37.2              |  |
| 14     | VP    | 12.3               | 20.0              |  |
| 15     | BY    | 26.0               | 79.8              |  |
| 16     | PC    | 15.1               | 45.4              |  |
| 17     | НМ    | 20.5               | 39.3              |  |
| 18     | FM    | 13.5               | 26.1              |  |
| 19     | BE    | 15.7               | 26.7              |  |
| 20     | RM    | 14.5               | 35.9              |  |
| 21     | SV    | 24.1               | 44.2              |  |
| 22     | SM    | 17.8               | 35.2              |  |
| 23     | BU    | 20.5               | 35.3              |  |
| 24     | BB    | 18.8               | 38.4              |  |
| 25     | SB    | 13.3               | 24.9              |  |
| 26     | AH    | 8.5                | 17.3              |  |
| 27     | HI    | 17.2               | 38.6              |  |
| 28     | CA    | 30.7               | 46.5              |  |
| 29     | HB    | 18.8               | 32.9              |  |
| 30     | RD    | 6.4                | 11.3              |  |
| 31     | DW    | 5.2                | 9.7               |  |
| 32     | PS    | 10.2               | 22.4              |  |
| 33     | AB    | 25.5               | 42.8              |  |
| 34     | AS    | 15.2               | 30.7              |  |

| FVS    | Alpha |                           |            |  |
|--------|-------|---------------------------|------------|--|
| Number | Code  | <b>DBH</b> <sub>LOW</sub> | $DBH_{HI}$ |  |
| 46     | MG    | 14.4                      | 32.5       |  |
| 47     | CT    | 17.7                      | 27.0       |  |
| 48     | MS    | 19.8                      | 36.5       |  |
| 49     | MV    | 14.4                      | 32.5       |  |
| 50     | ML    | 19.8                      | 36.5       |  |
| 51     | AP    | 9.0                       | 21.2       |  |
| 52     | MB    | 13.0                      | 23.6       |  |
| 53     | WT    | 21.4                      | 63.8       |  |
| 54     | BG    | 16.2                      | 30.8       |  |
| 55     | TS    | 15.9                      | 33.0       |  |
| 56     | HH    | 8.8                       | 18.6       |  |
| 57     | SD    | 8.1                       | 16.7       |  |
| 58     | RA    | 7.4                       | 19.2       |  |
| 59     | SY    | 23.6                      | 56.6       |  |
| 60     | CW    | 30.7                      | 46.5       |  |
| 61     | BT    | 24.0                      | 48.0       |  |
| 62     | BC    | 12.3                      | 26.9       |  |
| 63     | WO    | 18.9                      | 42.8       |  |
| 64     | SO    | 17.7                      | 34.5       |  |
| 65     | SK    | 19.2                      | 42.3       |  |
| 66     | CB    | 25.5                      | 46.2       |  |
| 67     | TO    | 8.6                       | 17.2       |  |
| 68     | LK    | 22.1                      | 48.1       |  |
| 69     | OV    | 26.7                      | 48.0       |  |
| 70     | BJ    | 13.0                      | 22.7       |  |
| 71     | SN    | 25.1                      | 47.2       |  |
| 72     | CK    | 19.5                      | 37.2       |  |
| 73     | WK    | 22.9                      | 47.6       |  |
| 74     | CO    | 20.4                      | 38.4       |  |
| 75     | RO    | 21.3                      | 41.1       |  |
| 76     | QS    | 23.1                      | 40.6       |  |
| 77     | PO    | 17.6                      | 38.9       |  |
| 78     | ВО    | 19.3                      | 40.2       |  |
| 79     | LO    | 31.4                      | 58.8       |  |
|        |       |                           | Pag        |  |

| FVS<br>Number | Alpha<br>Code | <b>DBH</b> <sub>LOW</sub> | DBH <sub>HI</sub> |
|---------------|---------------|---------------------------|-------------------|
| 35            | WA            | 18.2                      | 33.4              |
| 36            | BA            | 18.0                      | 36.0              |
| 37            | GA            | 20.6                      | 37.0              |
| 38            | HL            | 18.4                      | 33.2              |
| 39            | LB            | 12.5                      | 28.1              |
| 40            | HA            | 14.8                      | 20.5              |
| 41            | HY            | 7.4                       | 17.1              |
| 42            | BN            | 12.0                      | 30.0              |
| 43            | WN            | 16.7                      | 32.9              |
| 44            | SU            | 16.3                      | 39.6              |
| 45            | YP            | 19.5                      | 40.4              |

| FVS<br>Number | Alpha<br>Code | <b>DBH</b> <sub>LOW</sub> | DBH <sub>HI</sub> |
|---------------|---------------|---------------------------|-------------------|
| 80            | BK            | 17.2                      | 30.8              |
| 81            | WI            | 23.8                      | 38.8              |
| 82            | SS            | 11.8                      | 25.6              |
| 83            | BW            | 19.0                      | 32.1              |
| 84            | EL            | 15.4                      | 31.4              |
| 85            | WE            | 13.4                      | 23.9              |
| 86            | AE            | 19.6                      | 46.7              |
| 87            | RL            | 17.8                      | 35.8              |
| 88            | OS            | 11.9                      | 24.1              |
| 89            | OH            | 12.3                      | 33.3              |
| 90            | OT            | 9.8                       | 20.5              |

#### 4.7.2 Large Tree Height Growth

CR

In the SN variant, the large-tree height growth model follows the approach of Wensel and others (1987) where the potential height growth is calculated for every tree and modified based on individual tree crown ratio and relative height in the stand using equation {4.7.2.1}. Potential height growth is calculated using the methodology described in the small-tree height increment model.

The crown ratio modifying function uses Hoerl's Special Function (HSF) form (Cuthbert and Wood 1971, p. 23) identified in equation {4.7.2.2} with a range of 0.0 to 1.0. The a-c parameters are chosen so that height growth is maximized for crown ratios between 45 and 75%.

```
{4.7.2.1} HTG = POTHTG * (0.25 * HGMDCR + 0.75 * HGMDRH)

{4.7.2.2} HGMDCR = CR<sup>3.0</sup> * e<sup>-5.0*CR</sup>

where:

HTG is periodic height growth

POTHTG is the potential periodic height growth, see section 4.6.1.

HGMDCR is the crown ratio modifier (bounded to HGMDCR < 1.0)

HGMDRH is the relative height modifier
```

is crown ratio expressed as a proportion

The relative height modifying function (*HGMDRH*) is based on the height of the tree record compared to the top height of the stand, adjusted for shade tolerance. The modifying function is based on the Generalized Chapman-Richards function (Donnelly and Betters 1991, Donnelly and others 1992, and Pienaar and Turnbull 1973), whose parameters are set to attenuate height growth based on relative height and shade tolerance, see equation {4.7.2.3} – {4.7.2.7}. Coefficients for these equations are shown in tables 4.7.2.1 and 4.7.2.2. The modifier value (*HGMDRH*) decreases with decreasing relative height and species intolerance with a range between 0.0 and 1.0. Height growth reaches an upper asymptote of 1.0 at a relative height of 1.0 for intolerant species and 0.7 for tolerant species.

$$\{4.7.2.3\}\ FCTRKX = ((RHK / RHYXS)^{(RHM-1)}) - 1$$
  
 $\{4.7.2.4\}\ FCTRRB = (-1.0 * RHR) / (1 - RHB)$ 

$$\{4.7.2.5\}\ FCTRXB = RELHT^{(1-RHB)} - RHXS^{(1-RHB)}$$

$$\{4.7.2.6\}$$
 *FCTRM* = 1 /  $(1 - RHM)$ 

$$\{4.7.2.7\}\ HGMDRH = RHK * (1 + FCTRKX * e^{FCTRRB*FCTRXB})^{FCTRM}$$

### where:

RELHT is the subject tree's height relative to the 40 tallest trees in the stand HGMDRH is the relative height modifier used in equation {4.7.2.1} above are coefficients based on shade tolerance of a species shown in table 4.7.2.1 RH...

**Table 4.7.2.1** Shade tolerance coefficients for equations  $\{4.7.2.3\} - \{4.7.2.7\}$  the SN variant.

| Shade Tolerance | RHR | RHYXS | RHM | RHB   | RHXS | RHK |
|-----------------|-----|-------|-----|-------|------|-----|
| Very Tolerant   | 20  | 0.20  | 1.1 | -1.10 | 0    | 1   |
| Tolerant        | 16  | 0.15  | 1.1 | -1.20 | 0    | 1   |
| Intermediate    | 15  | 0.10  | 1.1 | -1.45 | 0    | 1   |
| Intolerant      | 13  | 0.05  | 1.1 | -1.60 | 0    | 1   |
| Very Intolerant | 12  | 0.01  | 1.1 | -1.60 | 0    | 1   |

**Table 4.7.2.2** Shade tolerance by species in the SN variant. Alpha

| FVS    | Alpha | Shade         |
|--------|-------|---------------|
| Number | Code  | Tolerance     |
| 1      | FR    | Very Tolerant |
| 2      | JU    | Intolerant    |
| 3      | PI    | Tolerant      |
| 4      | PU    | Intolerant    |
| 5      | SP    | Intolerant    |
| 6      | SA    | Intolerant    |
| 7      | SR    | Very Tolerant |
| 8      | LL    | Intolerant    |
| 9      | TM    | Intolerant    |
| 10     | PP    | Intolerant    |
| 11     | PD    | Intolerant    |
| 12     | WP    | Intermediate  |
| 13     | LP    | Intolerant    |
| 14     | VP    | Intolerant    |
| 15     | BY    | Intermediate  |
| 16     | PC    | Intermediate  |
| 17     | HM    | Very Tolerant |
| 18     | FM    | Tolerant      |
| 19     | BE    | Tolerant      |
| 20     | RM    | Tolerant      |
| 21     | SV    | Tolerant      |
| 22     | SM    | Very Tolerant |
| 23     | BU    | Tolerant      |
| 24     | BB    | Intolerant    |
| 25     | SB    | Intolerant    |
| 26     | AH    | Very Tolerant |
| 27     | HI    | Intermediate  |
| 28     | CA    | Intolerant    |
| 29     | HB    | Intermediate  |
| 30     | RD    | Tolerant      |

| FVS    | Alpha | Shade           |
|--------|-------|-----------------|
| Number | Code  | Tolerance       |
| 31     | DW    | Very Tolerant   |
| 32     | PS    | Very Tolerant   |
| 33     | AB    | Very Tolerant   |
| 34     | AS    | Tolerant        |
| 35     | WA    | Intolerant      |
| 36     | BA    | Intolerant      |
| 37     | GA    | Tolerant        |
| 38     | H     | Intolerant      |
| 39     | LB    | Tolerant        |
| 40     | HA    | Tolerant        |
| 41     | HY    | Very Tolerant   |
| 42     | BN    | Intolerant      |
| 43     | WN    | Intolerant      |
| 44     | SU    | Intolerant      |
| 45     | ΥP    | Intolerant      |
| 46     | MG    | Tolerant        |
| 47     | CT    | Intermediate    |
| 48     | MS    | Tolerant        |
| 49     | MV    | Intermediate    |
| 50     | ML    | Tolerant        |
| 51     | AP    | Intolerant      |
| 52     | MB    | Tolerant        |
| 53     | WT    | Intolerant      |
| 54     | BG    | Tolerant        |
| 55     | TS    | Intolerant      |
| 56     | H     | Tolerant        |
| 57     | SD    | Tolerant        |
| 58     | RA    | Tolerant        |
| 59     | SY    | Intermediate    |
| 60     | CW    | Very Intolerant |
|        |       |                 |

| FVS    | Alpha | Shade           |
|--------|-------|-----------------|
| Number | Code  | Tolerance       |
| 61     | BT    | Very Intolerant |
| 62     | BC    | Intolerant      |
| 63     | WO    | Intermediate    |
| 64     | SO    | Very Intolerant |
| 65     | SK    | Intermediate    |
| 66     | CB    | Intolerant      |
| 67     | TO    | Intolerant      |
| 68     | LK    | Tolerant        |
| 69     | OV    | Intermediate    |
| 70     | BJ    | Intolerant      |
| 71     | SN    | Intolerant      |
| 72     | CK    | Intolerant      |
| 73     | WK    | Intolerant      |
| 74     | CO    | Intermediate    |
| 75     | RO    | Intermediate    |
| 76     | QS    | Intolerant      |
| 77     | PO    | Intolerant      |
| 78     | ВО    | Intermediate    |
| 79     | LO    | Intermediate    |
| 80     | BK    | Very Intolerant |
| 81     | WI    | Very Intolerant |
| 82     | SS    | Intolerant      |
| 83     | BW    | Tolerant        |
| 84     | EL    | Intermediate    |
| 85     | WE    | Tolerant        |
| 86     | ΑE    | Intermediate    |
| 87     | RL    | Tolerant        |
| 88     | OS    | Intermediate    |
| 89     | OH    | Intermediate    |
| 90     | OT    | Intermediate    |

Page 70 of 241

### **5.0 MORTALITY MODEL**

In the SN variant there are two types of mortality. The first is background mortality which accounts for occasional tree mortality in stands when the stand density is below a specified level. The second is density related mortality which determines mortality rates for individual trees based on their relationship with the stand's maximum density. Maximum density values are described in section 3.5. A detailed description of the mortality equations and how they are applied to individual trees can be found in section 7.3.2 of the Essential FVS guide (Dixon 2002).

### **5.1 Background Mortality**

The equation used to calculate background mortality for all species is shown in equation  $\{5.1.1\}$ . This annual rate is adjusted to the length of the cycle by using a compound interest formula as shown in equation  $\{5.1.2\}$ .

$$\{5.1.1\}\ RI = [1/(1 + e^{(b_1 + b_2 * DBH)})] * 0.5$$

$$\{5.1.2\}\ RIP = 1 - (1 - RI)^Y$$

where:

RI is the proportion of the tree record attributed to mortality RIP is the final mortality rate adjusted to the length of the cycle

*DBH* is tree diameter at breast height

Y is length of the current projection cycle in years b<sub>1</sub>, b<sub>2</sub> are species-specific coefficients shown in table 5.1.1

**Table 5.1.1** Default coefficients used in the background mortality equation {5.1.1} in the SN variant.

| FVS    | Alpha |                |            |
|--------|-------|----------------|------------|
| Number | Code  | b <sub>1</sub> | $b_2$      |
| 1      | FR    | 5.1676998      | -0.0077681 |
| 2      | JU    | 9.6942997      | -0.0127328 |
| 3      | PI    | 5.1676998      | -0.0077681 |
| 4      | PU    | 5.5876999      | -0.0053480 |
| 5      | SP    | 5.5876999      | -0.0053480 |
| 6      | SA    | 5.5876999      | -0.0053480 |
| 7      | SR    | 5.1676998      | -0.0077681 |
| 8      | LL    | 5.5876999      | -0.0053480 |
| 9      | TM    | 5.5876999      | -0.0053480 |
| 10     | PP    | 5.5876999      | -0.0053480 |
| 11     | PD    | 5.5876999      | -0.0053480 |
| 12     | WP    | 5.5876999      | -0.0053480 |
| 13     | LP    | 5.5876999      | -0.0053480 |
| 14     | VP    | 5.5876999      | -0.0053480 |
| 15     | BY    | 5.5876999      | -0.0053480 |
| 16     | PC    | 5.5876999      | -0.0053480 |
| 17     | HM    | 5.1676998      | -0.0077681 |
| 18     | FM    | 5.1676998      | -0.0077681 |
| 19     | BE    | 5.1676998      | -0.0077681 |
| 20     | RM    | 5.1676998      | -0.0077681 |
| 21     | SV    | 5.1676998      | -0.0077681 |
| 22     | SM    | 5.1676998      | -0.0077681 |

| FVS    | Alpha |                |            |
|--------|-------|----------------|------------|
| Number | Code  | $\mathbf{b_1}$ | $b_2$      |
| 46     | MG    | 5.1676998      | -0.0077681 |
| 47     | CT    | 5.9617000      | -0.0340128 |
| 48     | MS    | 5.1676998      | -0.0077681 |
| 49     | MV    | 5.9617000      | -0.0340128 |
| 50     | ML    | 5.1676998      | -0.0077681 |
| 51     | AP    | 5.9617000      | -0.0340128 |
| 52     | MB    | 5.1676998      | -0.0077681 |
| 53     | WT    | 5.9617000      | -0.0340128 |
| 54     | BG    | 5.1676998      | -0.0077681 |
| 55     | TS    | 5.9617000      | -0.0340128 |
| 56     | HH    | 5.1676998      | -0.0077681 |
| 57     | SD    | 5.1676998      | -0.0077681 |
| 58     | RA    | 5.1676998      | -0.0077681 |
| 59     | SY    | 5.9617000      | -0.0340128 |
| 60     | CW    | 5.9617000      | -0.0340128 |
| 61     | BT    | 5.9617000      | -0.0340128 |
| 62     | BC    | 5.9617000      | -0.0340128 |
| 63     | WO    | 5.9617000      | -0.0340128 |
| 64     | SO    | 5.9617000      | -0.0340128 |
| 65     | SK    | 5.9617000      | -0.0340128 |
| 66     | СВ    | 5.9617000      | -0.0340128 |
| 67     | TO    | 5.9617000      | -0.0340128 |
|        |       |                | <u> </u>   |

| 23 | BU | 5.1676998 | -0.0077681 |
|----|----|-----------|------------|
| 24 | BB | 5.9617000 | -0.0340128 |
| 25 | SB | 5.1676998 | -0.0077681 |
| 26 | AH | 5.1676998 | -0.0077681 |
| 27 | Ξ  | 5.9617000 | -0.0340128 |
| 28 | CA | 5.9617000 | -0.0340128 |
| 29 | В  | 5.9617000 | -0.0340128 |
| 30 | RD | 5.1676998 | -0.0077681 |
| 31 | DW | 5.1676998 | -0.0077681 |
| 32 | PS | 5.1676998 | -0.0077681 |
| 33 | AB | 5.1676998 | -0.0077681 |
| 34 | AS | 5.1676998 | -0.0077681 |
| 35 | WA | 5.9617000 | -0.0340128 |
| 36 | BA | 5.9617000 | -0.0340128 |
| 37 | GA | 5.1676998 | -0.0077681 |
| 38 | HL | 5.9617000 | -0.0340128 |
| 39 | LB | 5.1676998 | -0.0077681 |
| 40 | HA | 5.1676998 | -0.0077681 |
| 41 | HY | 5.1676998 | -0.0077681 |
| 42 | BN | 5.9617000 | -0.0340128 |
| 43 | WN | 5.9617000 | -0.0340128 |
| 44 | SU | 5.9617000 | -0.0340128 |
| 45 | YP | 5.9617000 | -0.0340128 |
|    |    | •         |            |

| 68 | LK | 5.1676998 | -0.0077681 |
|----|----|-----------|------------|
| 69 | OV | 5.9617000 | -0.0340128 |
| 70 | BJ | 5.9617000 | -0.0340128 |
| 71 | SN | 5.9617000 | -0.0340128 |
| 72 | CK | 5.9617000 | -0.0340128 |
| 73 | WK | 5.9617000 | -0.0340128 |
| 74 | CO | 5.9617000 | -0.0340128 |
| 75 | RO | 5.9617000 | -0.0340128 |
| 76 | QS | 5.9617000 | -0.0340128 |
| 77 | PO | 5.9617000 | -0.0340128 |
| 78 | ВО | 5.9617000 | -0.0340128 |
| 79 | LO | 5.9617000 | -0.0340128 |
| 80 | BK | 5.1676998 | -0.0077681 |
| 81 | WI | 5.1676998 | -0.0077681 |
| 82 | SS | 5.1676998 | -0.0077681 |
| 83 | BW | 5.1676998 | -0.0077681 |
| 84 | EL | 5.1676998 | -0.0077681 |
| 85 | WE | 5.1676998 | -0.0077681 |
| 86 | AE | 5.1676998 | -0.0077681 |
| 87 | RL | 5.1676998 | -0.0077681 |
| 88 | OS | 5.5876999 | -0.0053480 |
| 89 | OH | 5.9617000 | -0.0340128 |
| 90 | OT | 5.9617000 | -0.0340128 |

### **5.2 Density-Related Mortality**

When density-related mortality is in effect, mortality is determined based on the trajectory developed from the relationship between stand SDI and the maximum SDI for the stand. In the SN variant, mortality is dispersed to individual tree records in relation to a tree's percentile in the basal area distribution (*PCT*) using equation {5.2.1}. This value is then adjusted by a species-specific mortality modifier (representing the species' shade tolerance) to obtain a final mortality rate as shown in equation {5.2.2}.

The mortality model makes multiple passes through the tree records multiplying a record's treesper-acre value times the final mortality rate (*MORT*), accumulating the results, and reducing the trees-per-acre representation until the desired mortality level has been reached.

$$\{5.2.1\}\ MR = 0.84525 - (0.01074 * PCT) + (0.0000002 * PCT^3)$$
  
 $\{5.2.2\}\ MORT = MR * MWT * 0.1$ 

where:

MR is the proportion of the tree record attributed to mortality (bounded:  $0.01 \le MR \le 1$ )

*PCT* is the subject tree's percentile in the basal area distribution of the stand

RELHT is tree height divided by average height of the 40 largest diameter trees in the stand

*MORT* is the final mortality rate of the tree record

MWT is a mortality weight value based on a species' tolerance shown in table 5.2.1

**Table 5.2.1** Default *MWT* values for the mortality equation {5.2.2} in the SN variant.

| FVS                   | FVS Alpha                  |                          |  |  |  |
|-----------------------|----------------------------|--------------------------|--|--|--|
|                       | Alpha                      | RANA/T                   |  |  |  |
| Number                | Code                       | MWT                      |  |  |  |
| 1                     | FK                         | 0.1                      |  |  |  |
| 2                     | JU                         | 0.7                      |  |  |  |
| 3                     | PI                         | 0.3                      |  |  |  |
| 1<br>2<br>3<br>4<br>5 | FR JU PI PU SP             | 0.7<br>0.7               |  |  |  |
| 5                     | SP                         | 0.7                      |  |  |  |
| 6                     | SA                         | 0.7                      |  |  |  |
| 7                     | SR                         | 0.1                      |  |  |  |
| 8                     | LL                         | 0.7                      |  |  |  |
| 9                     | TM                         | 0.7                      |  |  |  |
| 10                    | PP                         | 0.7                      |  |  |  |
| 11                    | PD                         | 0.7                      |  |  |  |
| 11<br>12              | WP                         | 0.7<br>0.7<br>0.7<br>0.7 |  |  |  |
| 13                    | LP                         | 0.7                      |  |  |  |
| 14                    | LL TM PP PD WP LP VP       | 0.7                      |  |  |  |
| 15                    | BY                         | 0.5                      |  |  |  |
| 16                    | PC<br>HM<br>FM<br>BE<br>RM | 0.5                      |  |  |  |
| 17                    | HM                         | 0.1                      |  |  |  |
| 18                    | FM                         | 0.3<br>0.3<br>0.3        |  |  |  |
| 19                    | BE                         | 0.3                      |  |  |  |
| 20                    | RM                         | 0.3                      |  |  |  |
| 21                    | SV                         | 0.3                      |  |  |  |
| 22                    | SM                         | 0.1                      |  |  |  |
| 23                    | BU                         | 0.3                      |  |  |  |
| 24                    | BB                         | 0.7                      |  |  |  |
| 25                    | SB                         | 0.7                      |  |  |  |
| 26                    | AH                         | 0.1                      |  |  |  |
| 27                    | AH<br>HI                   | 0.5                      |  |  |  |
| 28                    | CA                         | 0.7                      |  |  |  |
| 29                    | НВ                         | 0.5                      |  |  |  |
| 30                    | RD                         | 0.3                      |  |  |  |
|                       | L                          |                          |  |  |  |

| or the mortality equation $\{5.2.2\}$ in t |       |     |  |  |
|--------------------------------------------|-------|-----|--|--|
| FVS                                        | Alpha |     |  |  |
| Number                                     | Code  | MWT |  |  |
| 31                                         | DW    | 0.1 |  |  |
| 32                                         | PS    | 0.1 |  |  |
| 33                                         | AB    | 0.1 |  |  |
| 34                                         | AS    | 0.3 |  |  |
| 35                                         | WA    | 0.7 |  |  |
| 36                                         | BA    | 0.7 |  |  |
| 37                                         | GA    | 0.3 |  |  |
| 38                                         | HL    | 0.7 |  |  |
| 39                                         | LB    | 0.3 |  |  |
| 40                                         | HA    | 0.3 |  |  |
| 41                                         | HY    | 0.1 |  |  |
| 42                                         | BN    | 0.7 |  |  |
| 43                                         | WN    | 0.7 |  |  |
| 44                                         | SU    | 0.7 |  |  |
| 45                                         | YP    | 0.7 |  |  |
| 46                                         | MG    | 0.3 |  |  |
| 47                                         | CT    | 0.5 |  |  |
| 48                                         | MS    | 0.3 |  |  |
| 49                                         | MV    | 0.5 |  |  |
| 50                                         | ML    | 0.3 |  |  |
| 51                                         | AP    | 0.7 |  |  |
| 52                                         | MB    | 0.3 |  |  |
| 53                                         | WT    | 0.7 |  |  |
| 54                                         | BG    | 0.3 |  |  |
| 55                                         | TS    | 0.7 |  |  |
| 56                                         | HH    | 0.3 |  |  |
| 57                                         | SD    | 0.3 |  |  |
| 58                                         | RA    | 0.3 |  |  |
| 59                                         | SY    | 0.5 |  |  |
| 60                                         | CW    | 0.9 |  |  |

|                | Alpha                            | 1                        |
|----------------|----------------------------------|--------------------------|
| Number         | Code                             | MWT                      |
| 61             | BT                               | 0.9                      |
| 62             | BC                               | 0.9<br>0.7               |
| 63             | WO                               | 0.5                      |
| 64             | SO                               | 0.5<br>0.9               |
| 65             | SK                               | 0.5                      |
| 66             | CB                               | 0.7<br>0.7<br>0.3        |
| 67             | TO                               | 0.7                      |
| 68             | LK                               | 0.3                      |
| 69             | SK<br>CB<br>TO<br>LK<br>OV<br>BJ | 0.5                      |
| 70             | BJ                               | 0.5<br>0.7<br>0.7        |
| 71             | SN                               | 0.7                      |
| 72<br>73<br>74 | CK<br>WK                         | 0.7<br>0.7<br>0.5        |
| 73             | WK                               | 0.7                      |
| 74             | CO                               | 0.5                      |
| 75             | RO                               | 0.5                      |
| 76             | RO<br>QS                         | 0.7<br>0.7<br>0.5<br>0.5 |
| 77             | PO<br>BO<br>LO<br>BK             | 0.7                      |
| 78             | ВО                               | 0.5                      |
| 79             | LO                               | 0.5                      |
| 80             | BK                               | 0.9                      |
| 81             | WI                               | 0.9                      |
| 82             | SS                               | 0.7<br>0.3               |
| 83             | BW                               | 0.3                      |
| 84             | BW<br>EL                         | 0.5                      |
| 85             | WE                               | 0.3                      |
| 86             | ΑE                               | 0.5                      |
| 87             | RL                               | 0.3                      |
| 88             | OS                               | 0.5                      |
| 89             | OH                               | 0.5                      |
| 90             | OT                               | 0.5                      |

50 Page 73 of 241

### **6.0 REGENERATION**

The SN variant contains a partial establishment model which may be used to input regeneration and ingrowth into simulations. A more detailed description of how the partial establishment model works can be found in section 5.4.5 of the Essential FVS Guide (Dixon 2002).

The regeneration model is used to simulate stand establishment from bare ground, or to bring seedlings and sprouts into a simulation with existing trees. Sprouts are automatically added to the simulation following harvest or burning of known sprouting species (see table 6.0.1 for sprouting species). Users wanting to modify or turn off automatic sprouting can do so with the SPROUT or NOSPROUT keywords, respectively. Sprouts are not subject to maximum and minimum tree heights found in table 6.0.1 and do not need to be grown to the end of the cycle because estimated heights and diameters are end of cycle values.

Regeneration of seedlings must be specified by the user with the partial establishment model by using the PLANT or NATURAL keywords. Height of the seedlings is estimated in two steps. First, the height is estimated when a tree is 5 years old (or the end of the cycle – whichever comes first) by using the small-tree height growth equations found in section 4.6.1. Users may override this value by entering a height in field 6 of the PLANT or NATURAL keyword; however the height entered in field 6 is not subject to minimum height restrictions and seedlings as small as 0.05 feet may be established. The second step also uses the equations in section 4.6.1, which grow the trees in height from the point five years after establishment to the end of the cycle.

Seedlings and sprouts are passed to the main FVS model at the end of the growth cycle in which regeneration is established. Unless noted above, seedlings being passed are subject to minimum and maximum height constraints and a minimum budwidth constraint shown in Table 6.0.1. After seedling height is estimated, diameter growth is estimated using equations described in section 4.6.2. Crown ratios on newly established trees are estimated as described in section 4.3.1.

Regenerated trees and sprouts can be identified in the treelist output file with tree identification numbers beginning with the letters "ES".

**Table 6.0.1** Default regeneration parameters by species in the SN variant.

| FVS<br>Number | Alpha<br>Code | Sprouting Species? | Minimum Bud<br>Width (in) | Minimum Tree<br>Height (ft) | Maximum<br>Tree Height<br>(ft) |
|---------------|---------------|--------------------|---------------------------|-----------------------------|--------------------------------|
| 1             | FR            | No                 | 0.1                       | 0.50                        | 23                             |
| 2             | JU            | No                 | 0.3                       | 2.08                        | 27                             |
| 3             | PI            | No                 | 0.2                       | 0.50                        | 21                             |
| 4             | PU            | No                 | 0.5                       | 1.00                        | 21                             |
| 5             | SP            | No                 | 0.5                       | 1.32                        | 22                             |
| 6             | SA            | No                 | 0.5                       | 2.51                        | 20                             |
| 7             | SR            | No                 | 0.5                       | 0.50                        | 24                             |
| 8             | LL            | No                 | 0.5                       | 2.53                        | 18                             |
| 9             | TM            | No                 | 0.5                       | 2.75                        | 18                             |
| 10            | PP            | No                 | 0.5                       | 0.50                        | 17                             |
| 11            | PD            | No                 | 0.5                       | 5.05                        | 22                             |
| 12            | WP            | No                 | 0.4                       | 0.50                        | 20                             |
| 13            | LP            | No                 | 0.5                       | 4.70                        | 20                             |
| 14            | VP            | No                 | 0.5                       | 0.50                        | 20                             |

| FVS<br>Number | Alpha Sprouting Code Species? |     | Minimum Bud<br>Width (in) | Minimum Tree<br>Height (ft) | Maximum<br>Tree Height<br>(ft) |  |
|---------------|-------------------------------|-----|---------------------------|-----------------------------|--------------------------------|--|
| 15            | BY                            | Yes | 0.2                       | 1.33                        | 20                             |  |
| 16            | PC                            | Yes | 0.2                       | 1.33                        | 20                             |  |
| 17            | НМ                            | No  | 0.1                       | 0.66                        | 20                             |  |
| 18            | FM                            | Yes | 0.2                       | 2.40                        | 20                             |  |
| 19            | BE                            | Yes | 0.2                       | 1.35                        | 20                             |  |
| 20            | RM                            | Yes | 0.2                       | 1.35                        | 20                             |  |
| 21            | SV                            | Yes | 0.2                       | 2.03                        | 20                             |  |
| 22            | SM                            | Yes | 0.2                       | 0.50                        | 20                             |  |
| 23            | BU                            | No  | 0.3                       | 0.50                        | 20                             |  |
| 24            | BB                            | No  | 0.1                       | 0.50                        | 20                             |  |
| 25            | SB                            | No  | 0.1                       | 0.50                        | 20                             |  |
| 26            | AH                            | No  | 0.2                       | 2.08                        | 20                             |  |
| 27            | HI                            | Yes | 0.3                       | 0.51                        | 20                             |  |
| 28            | CA                            | No  | 0.3                       | 0.63                        | 20                             |  |
| 29            | НВ                            | No  | 0.1                       | 2.08                        | 20                             |  |
| 30            | RD                            | No  | 0.2                       | 2.08                        | 20                             |  |
| 31            | DW                            | Yes | 0.1                       | 2.08                        | 20                             |  |
| 32            | PS                            | No  | 0.2                       | 2.08                        | 20                             |  |
| 33            | AB                            | No  | 0.1                       | 0.50                        | 20                             |  |
| 34            | AS                            | Yes | 0.2                       | 0.50                        | 20                             |  |
| 35            | WA                            | Yes | 0.2                       | 0.50                        | 20                             |  |
| 36            | BA                            | Yes | 0.2                       | 0.92                        | 20                             |  |
| 37            | GA                            | Yes | 0.2                       | 0.50                        | 20                             |  |
| 38            | HL                            | Yes | 0.1                       | 5.98                        | 20                             |  |
| 39            | LB                            | Yes | 0.2                       | 0.94                        | 20                             |  |
| 40            | HA                            | No  | 0.2                       | 2.08                        | 20                             |  |
| 41            | HY                            | Yes | 0.1                       | 0.50                        | 20                             |  |
| 42            | BN                            | Yes | 0.3                       | 3.28                        | 20                             |  |
| 43            | WN                            | Yes | 0.4                       | 3.28                        | 20                             |  |
| 44            | SU                            | Yes | 0.2                       | 1.33                        | 20                             |  |
| 45            | YP                            | Yes | 0.2                       | 0.89                        | 20                             |  |
| 46            | MG                            | Yes | 0.2                       | 1.53                        | 20                             |  |
| 47            | CT                            | Yes | 0.2                       | 1.38                        | 20                             |  |
| 48            | MS                            | Yes | 0.2                       | 3.59                        | 20                             |  |
| 49            | MV                            | Yes | 0.2                       | 3.59                        | 20                             |  |
| 50            | ML                            | Yes | 0.2                       | 3.59                        | 20                             |  |
| 51            | AP                            | Yes | 0.2                       | 2.08                        | 20                             |  |
| 52            | MB                            | No  | 0.2                       | 2.08                        | 20                             |  |
| 53            | WT                            | Yes | 0.2                       | 4.15                        | 20                             |  |
| 54            | BG                            | Yes | 0.2                       | 3.59                        | 20                             |  |
| 55            | TS                            | Yes | 0.2                       | 3.59                        | 20                             |  |
| 56            | HH                            | Yes | 0.2                       | 2.08                        | 20                             |  |
| 57            | SD                            | Yes | 0.2                       | 2.08                        | 20                             |  |
| 58            | RA                            | No  | 0.2                       | 2.08                        | 20                             |  |
| 59            | SY                            | Yes | 0.1                       | 0.89                        | 20                             |  |
| 60            | CW                            | Yes | 0.1                       | 0.50                        | 20                             |  |
| 61            | BT                            | Yes | 0.2                       | 0.50                        | 20                             |  |
| 62            | BC                            | Yes | 0.1                       | 0.50                        | 20                             |  |
| 63            | WO                            | Yes | 0.2                       | 1.38                        | 20                             |  |
| 64            | SO                            | Yes | 0.2                       | 1.38                        | 20                             |  |
| 65            | SK                            | Yes | 0.1                       | 1.38                        | 20                             |  |
| 66            | CB                            | Yes | 0.1                       | 0.50                        | 20                             |  |
| 67            | TO                            | Yes | 0.2                       | 2.75                        | 20                             |  |
| 68            | LK                            | Yes | 0.1                       | 2.75                        | 20                             |  |
|               | -: `                          |     |                           |                             |                                |  |

| FVS<br>Number | Alpha<br>Code | Sprouting<br>Species? | Minimum Bud<br>Width (in) | Minimum Tree<br>Height (ft) | Maximum<br>Tree Height<br>(ft) |
|---------------|---------------|-----------------------|---------------------------|-----------------------------|--------------------------------|
| 69            | OV            | Yes                   | 0.2                       | 0.50                        | 20                             |
| 70            | BJ            | Yes                   | 0.2                       | 2.75                        | 20                             |
| 71            | SN            | Yes                   | 0.2                       | 0.50                        | 20                             |
| 72            | CK            | Yes                   | 0.1                       | 1.38                        | 20                             |
| 73            | WK            | Yes                   | 0.1                       | 0.50                        | 20                             |
| 74            | CO            | Yes                   | 0.2                       | 1.38                        | 20                             |
| 75            | RO            | Yes                   | 0.2                       | 1.38                        | 20                             |
| 76            | QS            | Yes                   | 0.1                       | 0.50                        | 20                             |
| 77            | PO            | Yes                   | 0.1                       | 2.75                        | 20                             |
| 78            | ВО            | Yes                   | 0.2                       | 1.38                        | 20                             |
| 79            | LO            | Yes                   | 0.2                       | 0.50                        | 20                             |
| 80            | BK            | Yes                   | 0.1                       | 5.98                        | 20                             |
| 81            | WI            | Yes                   | 0.1                       | 4.70                        | 20                             |
| 82            | SS            | Yes                   | 0.1                       | 2.08                        | 20                             |
| 83            | BW            | Yes                   | 0.1                       | 0.55                        | 20                             |
| 84            | EL            | Yes                   | 0.1                       | 0.50                        | 20                             |
| 85            | WE            | Yes                   | 0.1                       | 0.50                        | 20                             |
| 86            | AE            | Yes                   | 0.1                       | 0.50                        | 20                             |
| 87            | RL            | Yes                   | 0.1                       | 0.50                        | 20                             |
| 88            | OS            | No                    | 0.3                       | 2.08                        | 20                             |
| 89            | ОН            | No                    | 0.2                       | 2.08                        | 20                             |
| 90            | OT            | No                    | 0.2                       | 2.08                        | 20                             |

### 7.0 VOLUME

Volume estimation method is based on the volume equations contained in the National Volume Estimator Library and is maintained by the Forest Products Measurements group in the Forest Management Service Center. For information on the equation numbers used by each species, please contact the Forest Products Measurements group at wo\_ftcol\_measurement@fs.fed.us.

Volume is calculated for three merchantability standards: merchantable stem cubic feet pulpwood, merchantable stem cubic feet sawtimber, and merchantable stem board feet sawtimber. The default merchantability standards for the SN variant are shown in table 7.0.1.

**Table 7.0.1** Volume merchantability standards for the SN variant.

| Pulpwood Volume Specifications:                            |                   |                   |  |  |  |  |
|------------------------------------------------------------|-------------------|-------------------|--|--|--|--|
| Minimum DBH / Top Diameter Inside Bark Hardwoods Softwoods |                   |                   |  |  |  |  |
| All location codes                                         | 4.0 / 4.0 inches  | 4.0 / 4.0 inches  |  |  |  |  |
| Stump Height 1.0 foot 1.0 foot                             |                   |                   |  |  |  |  |
| Sawtimber Volume Specifications:                           |                   |                   |  |  |  |  |
| Minimum DBH / Top Diameter Inside Bark Hardwoods Softwoods |                   |                   |  |  |  |  |
| All location codes                                         | 12.0 / 9.0 inches | 10.0 / 7.0 inches |  |  |  |  |
| Stump Height                                               | 1.0 foot          | 1.0 foot          |  |  |  |  |

### 8.0 FIRE AND FUELS EXTENSION (FFE)

The Fire and Fuels Extension (FFE) to FVS (Reinhardt and Crookston 2003) integrates FVS with models of fire behavior, fire effects, and fuel and snag dynamics. This allows users to simulate various management scenarios and compare their effect on potential fire hazard, surface fuel loading, snag levels, and stored carbon over time. Users can also simulate prescribed burns and wildfires and get estimates of the associated fire effects such as tree mortality, fuel consumption, and smoke production, as well as see their effect on future stand characteristics. FFE, like FVS, is run on individual stands, but it can be used to provide estimates of stand characteristics such as canopy base height and canopy bulk density when needed for landscape-level fire models.

For more information on the Fire and Fuels Extension and how it is calibrated for the SN variant, see the Fire and Fuels Extension to the Forest Vegetation Simulator (Reinhardt and Crookston 2003) and the Fire and Fuels Extension Addendum (http://www.fs.fed.us/fmsc/ftp/fvs/docs/gtr/FFEaddendum.pdf).

### 9.0 INSECT AND DISEASE EXTENSIONS

FVS Insect and Disease models have been developed through the participation and contribution of various organizations led by Forest Health Protection. The models are maintained by the Forest Health Technology Enterprise Team (FHTET) and regional Forest Health Protection specialists. There are no insect and disease models currently available for the SN variant. However, FVS addfiles that simulate the effects of known agents within the SN variant may be found at the FHTET website (http://www.fs.fed.us/foresthealth/technology/).

56

Page 79 of 241

### **10.0 LITERATURE CITED**

- Arner, S. L.; Woudenberg, S.; Waters, S.; Vissage, J; MacLean, C.; Thompson, M.; Hansen, M. 2001. National algorithm for determining stocking class, stand size class, and forest type for Forest Inventory and Analysis plots. Internal Rep. Newtown Square, PA: U. S. Department of Agriculture, Forest Service, Northeastern Research Station. 10p.
- Arney, J. D. 1985. A modeling strategy for the growth projection of managed stands. Canadian Journal of Forest Research 15(3):511-518.
- Bechtold, William A. 2003. Crown-diameter prediction models for 87 species of stand-grown trees in the eastern united states. Sjaf. 27(4):269-278.
- Bragg, Don C. 2001. A local basal area adjustment for crown width prediction. Njaf. 18(1):22-28.
- Burns, Russell M., and Barbara H. Honkala, tech. coords. 1990. Silvics of North America: Vol.1. Conifers; Vol.2. Hardwoods. Agriculture Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC.
- Carmean, Willard H.; Hahn, Jerold T.; Jacobs, Rodney D. 1989. Site index curves for forest tree species in the eastern United States. Gen. Tech. Report NC-128. St. Paul, MN: U.S. Department of Agriculture, North Central Forest Experiment Station. 142 p.
- Clark, Alexander III; Souter, Ray A.; Schlaegal, Bryce E. 1991. Stem profile equations for Southern tree species. Res. Pap. SE-282. Asheville, NC: Forest Service, Southeastern Forest Experiment Station. 113 p.
- Cole, D. M.; Stage, A. R. 1972. Estimating future diameters of lodgepole pine. Res. Pap. INT-131. Ogden, UT: U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 20p.
- Curtis, Robert O. 1967. Height-diameter and height-diameter-age equations for second-growth Douglas-fir. Forest Science 13(4):365-375.
- Cuthbert, Daniel; Wood, Fred S. 1971. Fitting equations to data; computer analysis of multifactor data for scientists and engineers. Wiley-Interscience, New York. 342 p. (A 2<sup>nd</sup> edition is available: Wiley, New York. 1980. 458 p.)
- Dixon, G. E. 1985. Crown ratio modeling using stand density index and the Weibull distribution. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 13p.
- Dixon, Gary E. comp. 2002. Essential FVS: A user's guide to the Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 209p. (Last Revised: April 2007)
- Donnelly, D. M.; Betters, D. R. 1991. Optimal control for scheduling final harvest in even-aged forest stands. Forest Ecology and Management 46:135-149.

- Donnelly, Dennis M.; Betters, David R.; Turner, Matthew T.; Gaines, Robert E. 1992. Thinning even-aged forest stands: Behavior of singular path solutions in optimal control analyses. Res. Paper RM-307. Fort Collins, CO: U.S. Department of Agriculture, Rocky Mountain Forest and Range Experiment Station. 12 p.
- Doolittle, Warren T. 1958. Site Index Comparisons for several Forest Species in the Southern Appalachians. Soil Science Society of America proceedings. 22(5). pp. 455-458.
- Ek, Alan. 1974. Dimensional relationships of forest and open grown trees in Wisconsin. Univ. Of Wisconsin.
- Harlow, William M., Harrar, Ellwood S. 1968. *Textbook of dendrology: covering important forest trees of the United states and Canada*. McGraw-Hill, New York. 512p.
- Keys, James E., Constance A. Carpenter, Susan L. Hooks, Frank G. Koenig, W. Henry McNab, Walter E. Russell, and Marie-Louise Smith. 1995. *Ecological Units of the Eastern United States: A First Approximation*. USDA Forest Service. Southern Region. {Note: Complete package consists of large paper map, Map Unit Tables document, and a CD-ROM.}
- Krajicek, J.; Brinkman, K.; Gingrich, S. 1961. Crown competition a measure of density. For. Science 7(1):35-42.
- Pienaar, L.V., Turnbull, K.J. 1973. The Chapmann-Richards generalization of von Bertalanffy's growth model for basal area growth and yield in even-aged stands. For. Science. 19(1):2-22.
- Reinhardt, Elizabeth; Crookston, N. L. (Technical Editors). 2003. The Fire and Fuels Extension to the Forest Vegetation Simulator. Gen. Tech. Rep. RMRS-GTR-116. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain research Station. 209 p.
- Smith, W.R., R.M. Farrar, JR, P.A. Murphy, J.L. Yeiser, R.S. Meldahl, and J.S. Kush. 1992. Crown and basal area relationships of open-grown southern pines for modeling competition and growth.
- Stage, A. R. 1973. Prognosis Model for stand development. Res. Paper INT-137. Ogden, UT: U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 32p.
- USDA Forest Service. 1992. Silvicultural Examination and Prescription Field Book. USDA Forest Service Southern region, Atlanta GA. USDA Forest Service, Southern Region. 32 p.
- Van Dyck, M.G. 2000. Keyword reference guide for the Forest Vegetation Simulator. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 130 p.
- Wensel, Lee C.; Meerschaert, Walter J.; Biging, Greg S. 1987. Tree height and diameter growth models for northern California conifers. Hilgardia 55(8), 20 p.

- Wykoff, W. R. 1990. A basal area increment model for individual conifers in the northern Rocky Mountains. For. Science 36(4): 1077-1104.
- Wykoff, William R., Crookston, Nicholas L., and Stage, Albert R. 1982. User's guide to the Stand Prognosis Model. Gen. Tech. Rep. INT-133. Ogden, UT: Forest Service, Intermountain Forest and Range Experiment Station. 112p.

## 11.0 APPENDICES

# Appendix A. Ecological Unit Codes (EUC) Codes

Table 11.0.1 EUC codes recognized in the SN variant.

| FVS        | 1 Lee codes recognized in the Six V     |
|------------|-----------------------------------------|
| Sequence   |                                         |
| Number =   |                                         |
| EUC        | Subsection Name                         |
| 1 = 221Db  | Piedmont Upland                         |
| 2 = 221Eb  | Teays Plateau                           |
| 3 = 221Ha  | Rugged Eastern Hills                    |
| 4 = 221Hc  | Southwestern Escarpment                 |
| 5 = 221Hd  | Sequatchie Valley                       |
| 6 = 221He  | Low Hills Belt                          |
| 7 = 221Ja  | Rolling Limestone Hills                 |
| 8 = 221Jb  | Sandstone Hills                         |
| 9 = 221Jc  | Holston Valley                          |
| 10 = 222Ab | Central Plateau                         |
| 11 = 222Ag | White River Hills                       |
| 12 = 222Ah | Elk River Hills                         |
| 13 = 222AI | Black River Ozark Border                |
| 14 = 222Am | Springfield Plain                       |
| 15 = 222An | Springfield Plateau                     |
| 16 = 222Cb | Northern Deep Loess Hills and Bluffs    |
| 17 = 222Cc | Deep Loess Hills and Bluffs             |
| 18 = 222Cd | Clay Hills                              |
| 19 = 222Ce | Northern Loessial Hills                 |
| 20 = 222Cf | Northern Pontotoc Ridge                 |
| 21 = 222Cg | Upper Loam Hills                        |
| 22 = 222Ch | Ohio and Cache River Alluvial Plain     |
| 23 = 222Da | Interior Western Coalfields             |
| 24 = 222Db | Lower Ohio-Cache-Wabash Alluvial plains |
| 25 = 222Dc | Outer Western Coalfields                |
| 26 = 222Dd | Marion Hills                            |
| 27 = 222De | Crawford Uplands                        |
| 28 = 222Dg | Southern Dripping Springs               |
| 29 = 222Di | Lesser Shawnee Hills                    |
| 30 = 222Dj | Northern Dripping Springs               |
| 31 = 222Ea | Eastern Highland Rim                    |
| 32 = 222Eb | Eastern Karst Plain                     |
| 33 = 222Ec | Outer Nashville Basin                   |
| 34 = 222Ed | Inner Nashville Basin                   |
| 35 = 222Ee | Highland Rim-Hilly and Rolling          |
| 36 = 222Ef | Tennessee-Gasper Valley                 |
| 37 = 222Eg | Western Pennyroyal Karst Plain          |
| 38 = 222Eh | Penneroyal Karst Plain                  |
| 39 = 222Ei | Western Knobs                           |
| 40 = 222Ej | Eastern Knobs Transition                |

| FVS         |                                                  |
|-------------|--------------------------------------------------|
| Sequence    |                                                  |
| Number =    |                                                  |
| EUC         | Subsection Name                                  |
| 114 = 232Bf | Florida Central Highlands                        |
| 115 = 232Bg | South Coastal Plains                             |
| 116 = 232Bh | Gulf Southern Loam Hills                         |
| 117 = 232Bi | The Plains                                       |
| 118 = 232Bj | Southern Loam Hills                              |
| 119 = 232Bk | Southern Clay Hills                              |
| 120 = 232BI | Lower Loam and Clay Hills                        |
| 121 = 232Bm | Lower Clay Hills                                 |
| 122 = 232Bn | Lower Loam Hills                                 |
| 123 = 232Bo | Border Sand Hills                                |
| 124 = 232Bp | Wiregrass Plains                                 |
| 125 = 232Bq | Sand Hills                                       |
| 126 = 232Br | Atlantic Southern Loam Hills                     |
| 127 = 232Bs | Floodplains and Terraces                         |
| 128 = 232Bu | Southwestern Loam Hills                          |
| 129 = 232Bv | Northern Loam Plains                             |
| 130 = 232Ca | Upper Terraces                                   |
| 131 = 232Cb | Lower Terraces                                   |
| 132 = 232Cc | Okefenokee Uplands                               |
| 133 = 232Cd | Okefenokee Swamp                                 |
| 134 = 232Ce | Coastal Marsh and Island                         |
| 135 = 232Cf | Bacon Terraces                                   |
| 136 = 232Cg | Flatwoods Floodplains and Terraces               |
| 137 = 232Ch | Tidal Area                                       |
| 138 = 232Ci | Pamlico and Albemarle Sounds and Barrier Islands |
| 139 = 232Cj | Chesapeake Bay                                   |
| 140 = 232Da | Immokalee Rise                                   |
| 141 = 232Db | Gulf Coastal Lowlands                            |
| 142 = 232Dc | Gulf Coast Flatwoods-Bays and Barrier Islands    |
| 143 = 232Dd | Mobile Bay, Sounds and Islands                   |
| 144 = 232De | Florida Gulf Coastal Bays and Islands            |
| 145 = 232Ea | Gulf Coast Prairies                              |
| 146 = 232Eb | Gulf Coast Marshes and Inland Bays               |
| 147 = 232Ec | Lake Ponchartrain                                |
| 148 = 232Ed | Gulf Coast Bays and Islands                      |
| 149 = 232Ee | Lake Borgne, Sounds and Islands                  |
| 150 = 232Fa | Southern Loam Hills                              |
| 151 = 232Fb | Southwest Flatwoods                              |
| 152 = 232Fc | Sabine Alluvial Valley                           |
| 153 = 232Fd | Neches Alluvial Valley                           |
|             | Page 83 of 241                                   |

| FVS                      |                                           |
|--------------------------|-------------------------------------------|
| Sequence                 |                                           |
| Number =                 | Subsection Name                           |
| EUC                      | Subsection Name                           |
| 41 = 222Ek               | Mitchell Karst Plains                     |
| 42 = 222En               | Kinniconick and Licking Knobs             |
| 43 = 222Eo               | The Cliffs Outer Bluegrees                |
| 44 = 222Fa               | Outer Bluegrass                           |
| 45 = 222Fb<br>46 = 222Fc | Inner Bluegrass Western Bluegrass         |
|                          |                                           |
| 47 = 222Fd               | Northern Bluegrass                        |
| 48 = 222Ff               | Scottsburg Lowland                        |
| 49 = 231Aa               | Midland Plateau Central Uplands           |
| 50 = 231Ab               | Piedmont Ridge                            |
| 51 = 231Ac               | Schist Plains                             |
| 52 = 231Ad               | Lower Foot Hills                          |
| 53 = 231Ae               | Charlotte Belt                            |
| 54 = 231Af               | Carolina Slate                            |
| 55 = 231Ag               | Schist Hills                              |
| 56 = 231Ah               | Granite Hills                             |
| 57 = 231Ai               | Opelika Plateau                           |
| 58 = 231Aj               | Mica Rich Plateau                         |
| 59 = 231Ak               | Lynchburg Belt                            |
| 60 = 231AI               | Northern Piedmont                         |
| 61 = 231Am               | Triassic Uplands                          |
| 62 = 231An               | Western Coastal Plain-Piedmont Transition |
| 63 = 231Ao               | Southern Triassic Uplands                 |
| 64 = 231Ap               | Triassic Basins                           |
| 65 = 231Ba               | Black Belt                                |
| 66 = 231Bb               | Interior Flatwoods                        |
| 67 = 231Bc               | Upper Clay Hills                          |
| 68 = 231Bd               | Upper Loam Hills                          |
| 69 = 231Be               | Transition Loam Hills                     |
| 70 = 231Bf               | Floodplains and Terraces                  |
| 71 = 231Bg               | Northern Loessial Hills                   |
| 72 = 231Bh               | Deep Loess Hills and Bluffs               |
| 73 = 231Bi               | Deep Loess Plains                         |
| 74 = 231Bj               | Jackson Hills                             |
| 75 = 231Bk               | Southern Pontotoc Ridge                   |
| 76 = 231BI               | Jackson Prairie                           |
| 77 = 231Ca               | Shale Hills and Mountain                  |
| 78 = 231Cb               | Sandstone Plateau                         |
| 79 = 231Cc               | Table Plateau                             |
| 80 = 231Cd               | Sandstone Mountain                        |
| 81 = 231Ce               | Moulton Valley                            |
| 82 = 231Cf               | Southern Cumberland Valleys               |
| 83 = 231Cg               | Sequatchie Valley                         |
| 84 = 231Da               | Chert Valley                              |
| 85 = 231Db               | Sandstone-Shale and Chert Ridge           |
| 86 = 231Dc               | Sandstone Ridge                           |

| FVS                        |                                                      |
|----------------------------|------------------------------------------------------|
| Sequence                   |                                                      |
| Number = EUC               | Subsection Name                                      |
| 154 = 232Fe                | Piney Woods Transition                               |
| 154 = 232Fe<br>155 = 232Ga | Eastern Beach and Lagoons                            |
|                            |                                                      |
| 156 = 232Gb                | Eastern Beach and Dunes                              |
| 157 = 232Gc                | Okeechobee Plain                                     |
| 158 = 232Gd                | Kissimmee River                                      |
| 159 = 234Aa                | Southern Mississippi River Alluvial Plain            |
| 160 = 234Ab                | Crowleys Ridge White and Black Rivers Alluvial Plain |
| 161 = 234Ac                |                                                      |
| 162 = 234Ad                | Baton Rouge Terrace                                  |
| 163 = 234Ae                | Arkansas Grand Prairie                               |
| 164 = 234Af                | Atchafalaya Alluvial Plain                           |
| 165 = 234Ag                | Arkansas Alluvial Plain                              |
| 166 = 234Ah                | Macon Ridge                                          |
| 167 = 234Ai                | Red River Alluvial Plain                             |
| 168 = 234Aj                | Bastrop Ridge                                        |
| 169 = 234Ak                | Opelousas Ridge                                      |
| 170 = 234AI                | Teche Terrace                                        |
| 171 = 234Am                | St. Francis River Alluvial Plain                     |
| 172 = 234An                | North Mississippi River Alluvial Plain               |
| 173 = 251Ea                | Scarped Osage Plains                                 |
| 174 = 251Ec                | Central Tallgrass                                    |
| 175 = 251Ed                | Elk Prairie                                          |
| 176 = 251Fb                | Eastern Flint Hills                                  |
| 177 = 251Fc                | Southern Flint Hills                                 |
| 178 = 255Aa                | Cross Timbers-Cherokee Prairies                      |
| 179 = 255Ab                | Central Oklahoma Cross Timbers                       |
| 180 = 255Ac                | Central Red Rolling Prairies                         |
| 181 = 255Ad                | Southern Oklahoma Grand Prairies                     |
| 182 = 255Ae                | Cross Timbers and Central Rolling Red Prairies       |
| 183 = 255Af                | Cross Timbers - Southern Oklahoma                    |
| 184 = 255Ag                | Red River Alluvial Plain                             |
| 185 = 255Ah                | Texas Eastern Cross Timbers                          |
| 186 = 255Ai                | Texas Grand Prairie                                  |
| 187 = 255Aj                | Texas Western Cross Timbers                          |
| 188 = 255Ak                | Southwestern Timbers                                 |
| 189 = 255Ba                | Blackland Prairie                                    |
| 190 = 255Ca                | Texas Claypan Savannah                               |
| 191 = 255Cc                | Interior Savannah                                    |
| 192 = 255Cd                | Interior Blackland Prairie                           |
| 193 = 255Ce                | Trinity Alluvial Valley                              |
| 194 = 255Cf                | Blackland Prairie                                    |
| 195 = 255Cg                | Southern Texas Claypan Savannah                      |
| 196 = 255Da                | Texas Coastal Prairies                               |
| 197 = 255Db                | Brazos and Brazonia Alluvial Valley                  |
| 197 = 255Db                | Marshes-Inlands Bays-and Barrier Islands             |
| 100 - 20000                | Southern Texas Coastal Prairies and                  |
| 199 = 255Dd                | Savannah                                             |

| FVS<br>Sequence<br>Number =<br>EUC | Subsection Name                          |
|------------------------------------|------------------------------------------|
| 87 = 231Dd                         | Quartzite and Talladega Slate Ridge      |
| 88 = 231De                         | Shaley Limestone Valley                  |
| 89 = 231Ea                         | South Central Arkansas                   |
| 90 = 231Eb                         | Southwestern Arkansas                    |
| 91 = 231Ec                         | Ouachita Alluvial Valleys                |
| 92 = 231Ed                         | Sabine Alluvial Valley                   |
| 93 = 231Ee                         | Southern Oklahoma Subsection             |
| 94 = 231Ef                         | Piney Woods Transition                   |
| 95 = 231Eg                         | Sand Hills                               |
| 96 = 231Eh                         | Southern Loam Hills                      |
| 97 = 231Ei                         | Southwest Flatwoods                      |
| 98 = 231Ej                         | South Central Arkansas Flatwoods         |
| 99 = 231Ek                         | Southwestern Arkansas Blackland Prairies |
| 100 = 231EI                        | Trinity Alluvial Valley                  |
| 101 = 231Em                        | Red River Alluvial Plain                 |
| 102 = 231En                        | East Texas Timberlands-Cross Timbers     |
| 103 = 231Fa                        | Gulf Coast Praries                       |
| 104 = 231Fb                        | Marshes and Inland Bays                  |
| 105 = 231Ga                        | Eastern Arkansas Valley and Ridges       |
| 106 = 231Gb                        | Mount Magazine                           |
| 107 = 231Gc                        | Western Arkansas Valley and Ridges       |
| 108 = 232Ad                        | Western Chesapeake Uplands               |
| 109 = 232Ba                        | Fragipan Loam Hills                      |
| 110 = 232Bb                        | Southern Loessial Plains                 |
| 111 = 232Bc                        | Cintronelle Plains                       |
| 112 = 232Bd                        | Southern Deep Loess Hills and Bluffs     |
| 113 = 232Be                        | Florida Northern Highlands               |

| FVS<br>Sequence<br>Number =<br>EUC | Subsection Name                         |
|------------------------------------|-----------------------------------------|
| 200 = 411Aa                        | Lake Okeechobee                         |
| 201 = 411Ab                        | Everglades                              |
| 202 = 411Ac                        | Southern Slope                          |
| 203 = 411Ad                        | Atlantic Coastal Ridge                  |
| 204 = 411Ae                        | Coastal Lowlands-Tidal Marshes and Bays |
| 205 = 411Af                        | Big Cypress Spur                        |
| 206 = 411Ag                        | Florida Keys and Biscayne Bay           |
| 207 = M221Aa                       | Ridge and Valley                        |
| 208 = M221Ab                       | Great Valley of Virginia                |
| 209 = M221Ba                       | Northern High Allegheny Mountains       |
| 210 = M221Bd                       | Eastern Allegheny Mountain and Valley   |
| 211 = M221Be                       | West Allegheny Mountain and Valley      |
| 212 = M221Ca                       | Western Coal Fields                     |
| 213 = M221Cb                       | Eastern Coal Fields                     |
| 214 = M221Cc                       | Black Mountains                         |
| 215 = M221Cd                       | Southern Cumberland Mountains           |
| 216 = M221Ce                       | Pine and (The) Cumberland Mountain      |
| 217 = M221Da                       | Northern Blue Ridge Mountains           |
| 218 = M221Db                       | Central Blue Ridge Mountains            |
| 219 = M221Dc                       | Southern Blue Ridge Mountains           |
| 220 = M221Dd                       | Mestasedimentary Mountains              |
| 221 = M222Aa                       | The Boston Mountain                     |
| 222 = M222Ab                       | Boston Hills                            |
| 223 = M231Aa                       | Fourche Mountains                       |
| 224 = M231Ab                       | West Central Ouachita Mountains         |
| 225 = M231Ac                       | East Central Ouachita Mountains         |
| 226 = M231Ad                       | Athens Piedmont Plateau                 |

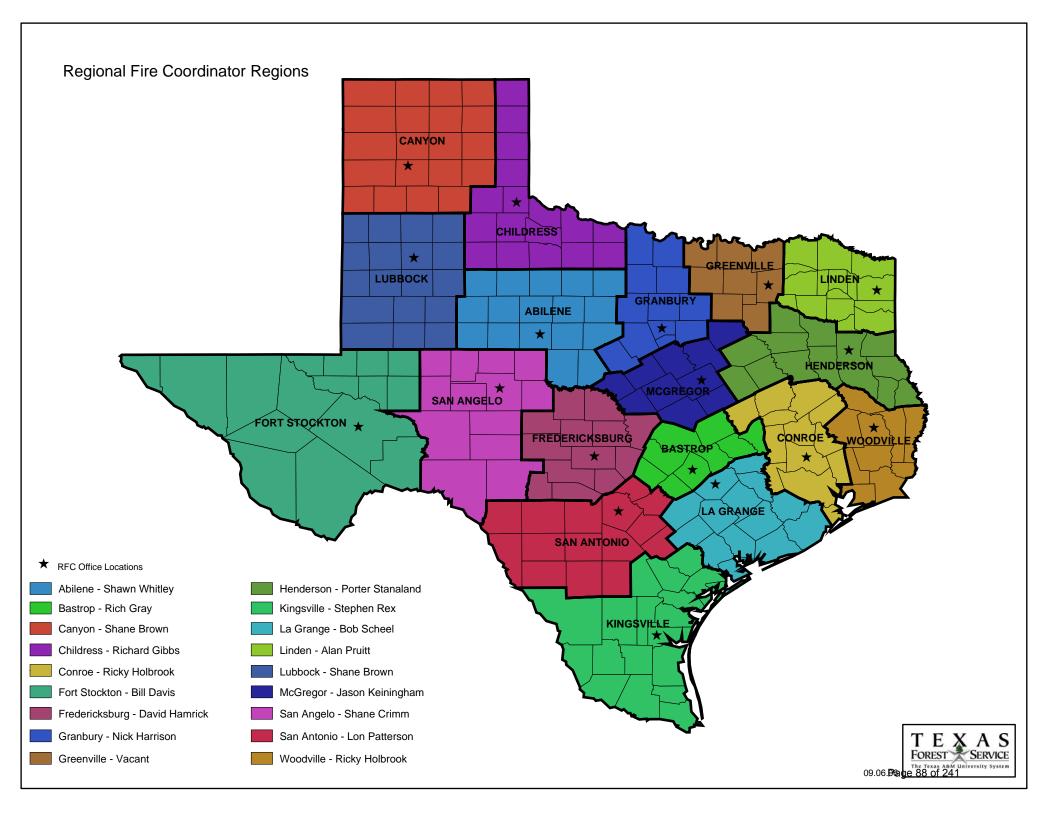
Page 85 of 241

62

### **GREAT TRINITY FOREST**

# Appendix D

**Sources and Contacts** 


**Great Trinity Forest Management Plan** 

**Sources and Contacts** 

**Texas Forest Service Contacts** 

&

Regional Location Map



Texas Forest Service Page 1 of 1

# TEXAS FOREST SERVICE

Protecting and sustaining forests, trees and related natural resources

REPORT ARSON OR TIMBER THEFT 1-800-364-3470

### **TEXAS** REGIONAL FIRE COORDINATORS

[ Print | Close ]

### **Texas Regional Fire Coordinators:**

| Region         | Coordinator                 | Office Phone                     | Cell Phone     |  |
|----------------|-----------------------------|----------------------------------|----------------|--|
| Abilene        | Shawn Whitley               | (325) 676 5827                   | (936) 545 7184 |  |
| Bastrop        | Rich Gray                   | (512) 321 2467                   | (979) 218 2406 |  |
| Canyon         | Shane Brown                 | (806) 651 3473                   | (979) 220 1540 |  |
| Childress      | Richard Gibbs               | (940) 937 2286                   | (979) 220 0577 |  |
| Conroe         | Ricky Holbrook              | (936) 327 4832                   | (936) 546 3094 |  |
| Fort Stockton  | Bill Davis                  | (915) 336 7290                   | (979) 218 2300 |  |
| Fredericksburg | David Hamrick               | (830) 997 5426                   | (979) 220 0756 |  |
| Granbury       | Nick Harrison               | (817) 579 5772                   | (979) 218 2408 |  |
| Greenville     | vacant                      |                                  |                |  |
| Henderson      | Porter Stanaland            | (936) 564 9276                   | (936) 546 1968 |  |
| Kingsville     | Stephen Rex                 | (361) 595 5118                   | (979) 324 0912 |  |
| La Grange      | Bob Scheel                  | (979) 968 5555                   | (979) 248 2407 |  |
| Linden         | Alan Pruitt                 | (903) 734 3504                   | (936) 546 1915 |  |
| Lubbock        | Shane Brown                 | (806) 651 3473                   | (979) 220 1540 |  |
| McGregor       | Jason Keiningham            | (254) 840 9086                   | (979) 218 3108 |  |
| San Angelo     | Shane Crimm                 | (325) 944 0065                   | (979) 218 2405 |  |
| San Antonio    | Lon Patterson               | (210) 532 5536                   | (979) 220 0522 |  |
| Woodville      | Ricky Holbrook              | (936) 327 4832                   | (936) 546 3094 |  |
| West Texas     | Paul Hannemann, Chief       | (830) 997 5426<br>(979) 458 7344 | (979) 218 2401 |  |
| West Texas     | Les Rogers, Asst. Chief     | (325) 676 5827                   | (979) 218 2403 |  |
| Central Texas  | Marty Martinez, Asst. Chief | (361) 595 5118                   | (979) 218 2404 |  |
| East Texas     | Bill Rose, Chief            | (936) 875 4400<br>(903) 586 7545 | (936) 546 1768 |  |

# TEXAS FOREST SERVICE

Protecting and sustaining forests, trees and related natural resources

REPORT ARSON OR TIMBER THEFT 1-800-364-3470



[ Print | Close ]

| Rich Gray, Regional Fire Coordination/State UWI Coordinator                                                                         | Traci Weaver, UWI Specialist/Public Information Officer                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Bastrop Office Office: (512) 321 2467 Pager: 1 800 299 4099, ID # 9536 Cell: (979) 218 2406 e-mail: rgray@tfs.tamu.edu              | Granbury Office Office: (817) 579 1847 Pager: 1 800 299 4099, ID # 3843 Cell: (979) 218 3035 e-mail: tweaver@tfs.tamu.edu       |
| Robbie Curles, Mitigation/Suppression Specialist                                                                                    | Jan Fulkerson, UWI Specialist (Neighborhood and Community Planning)                                                             |
| Bastrop Office Office: (512) 321 2467 Pager: 1 800 299 4099, ID # 4416 Cell: (979) 268 3770 e-mail: rcurles@tfs.tamu.edu            | Wimberly Office Office: (512) 847 7387 Pager: 1 800 299 4099, ID # 5971 Cell: (979) 200 1010 e-mail: jfulkerson@tfs.tamu.edu    |
| Karen Kilgore, UWI Specialist (GIS and UWI<br>Assessment)                                                                           | Mary Leathers, UWI Mitigation Exhibit Specialist                                                                                |
| Bastrop Office<br>Office: (512) 321 2467<br>Cell: (979) 218 3036<br>e-mail: kallender@tfs.tamu.edu                                  | McGregor Office Office: (254) 840 9086 Pager: 1 800 299 4099, ID # 4925 Cell: (979) 218 3030 e-mail: mleathers@tfs.tamu.edu     |
| Lexi Maxwell, UWI Specialist (Information and Education)                                                                            | P.J. Pearson, UWI Specialist (Firewise Communities/USA)                                                                         |
| Bastrop Office Office: (512) 321 2467 Pager: 1 800 299 4099, ID # 0256 Cell: (979) 220 0787 e-mail: lmaxwell@tfs.tamu.edu           | Fredricksburg Office Office: (830) 997 5426 Pager: 1 800 299 4099, ID # 4419 Cell: (979) 220 1217 e-mail: ppearson@tfs.tamu.edu |
| Justice Jones, East Texas UWI Coordinator                                                                                           | Lee McNeely, Regional UWI Coordinator                                                                                           |
| Conroe Office<br>Office: (936) 273 2261<br>Pager: 1 800 299 4099, ID # 1086<br>Cell: (936) 546 8042<br>e-mail: jjjones@tfs.tamu.edu | Linden Office Office: (903) 665 7400 Pager: 1 800 299 4099, ID # 0064 Cell: (936) 546 315614 e-mail: Imcneely@tfs.tamu.edu      |

### Karen Stafford, Regional UWI Coordinator

### Woodville Office

Office: (409) 331 9030

Pager: 1 800 299 4099, ID # 1371

Cell: (936) 545 6991

e-mail: kstafford@tfs.tamu.edu

### Jeff Lester, Regional UWI Coordinator

### Conroe Office

Office: (936) 273 2261

Pager: 1 800 299 4099, ID # 4562

Cell: (936) 544 0964

e-mail: jlester@tfs.tamu.edu

### Jan Amen, Public Information Officer

### Lufkin Office

Office: (936) 639 8105 Cell: (936) 546 1004

e-mail: jamen@tfs.tamu.edu

### Mahlon Hammetter, Public Information Officer

### Lufkin Office

Office: (936) 639 8162 Cell: (936) 546 1895

e-mail: mhammetter@tfs.tamu.edu

# **Great Trinity Forest Management Plan**

# **Sources and Contacts**

Forest Services Vendor Database: Herbicide Application Vendors

### Herbicide Application Vendors

| Company                                     | Contact              | Address                 | City         | State | Zip        | WorkPhone      | HomePhone      | Fax            |
|---------------------------------------------|----------------------|-------------------------|--------------|-------|------------|----------------|----------------|----------------|
| Acorn Outdoor Services                      | Justin Penick        | P. O. Box 151537        | Lufkin       | TX    | 75915-1537 | (936) 875-5400 |                | (936) 875-5401 |
| Advanced Forestry Services                  | Scotty or Karen Ward | P. O. Box 1327          | Jasper       | TX    | 75951      | (409) 384-5209 |                | (409) 384-8147 |
| AgRotors, Inc.                              | Jay Allison          | 508 Airport Road        | Natchitoches | LA    | 71457-3158 | (318) 352-3691 |                | (717) 334-0854 |
| Bonner Reforestation                        | Bubba Bonner         | 3198 Bethlehem Road     | Lufkin       | TX    | 75904      | (936) 875-3016 |                |                |
| Coastal Spray Company                       | Jose Chavez          | P. O. Box 3227          | Pasadena     | TX    | 77501      | (713) 473-1191 | (713) 664-3382 | (713) 920-1143 |
| Don Taylor                                  | Don Taylor           | Route 1 Box 4580        | Nacogdoches  | TX    | 75961      | (936) 569-7734 |                |                |
| George Whatley, Jr.                         | George Whatley, Jr.  | 558 County Road 4231    | Atlanta      | TX    | 75551      | (903) 796-5564 |                | (903) 796-5564 |
| Glasscock Enterprises                       | James Glasscock      | 22904 Hwy 69 N          | Mineola      | TX    | 75773      | (903) 882-3532 |                |                |
| Hagler Forestry                             |                      | 830 CR 1092             | Center       | TX    | 75935      | (936) 598-4805 | (936) 598-4805 | (936) 590-4843 |
| IBF                                         | Matthew L. Buchanan  | P. O. Box 165           | Carthage     | TX    | 75633      | (903) 693-4929 |                | (903) 693-3161 |
| Jimmy Glasscock Construction                | Jimmy Glasscock      | P. O. Box 561           | Lindale      | TX    | 75771      | (903) 882-6021 | (903) 882-6021 | (903) 882-6021 |
| McDonald Bro. Farms                         | Mitchell McDonald    | 510 E. Bell             | Crockett     | TX    | 75835      | (936) 546-5444 | (936) 544-8823 |                |
| McIlvain Enterprises Inc.                   |                      | 2510 Mc Bride Devillier | Winnie       | TX    | 77665      | (409) 296-4531 | (409) 296-6985 | (409) 296-3530 |
| Nelms Equipment & Reforestation             | Jason Nelms          | P. O. Box 5             | Pennington   | TX    | 75856      | (936) 638-2072 |                | (936) 638-2093 |
| Northstar Helicopter Inc                    | Mike Godwin          | P. O. Box 2033          | Jasper       | TX    | 75951      | (409) 384-5315 |                | (409) 384-3002 |
| Parker Forestry Consultants                 | Keelin Parker        | Route 2 Box 3225        | Woodville    | TX    | 75979      | (409) 283-5413 |                | (409) 837-2524 |
| Red River Specialties                       | Mike Cage            | 7545 Haygood Road       | Shreveport   | LA    | 71107      | (800) 256-3344 | (318) 965-9944 | (318) 426-6562 |
| Silva-Tech/South, Ltd.                      | Buddy Stalnaker      | P. O. Box 633262        | Nacogdoches  | TX    | 75963      | (936) 568-9031 |                | (936) 568-9031 |
| Superior Forestry Service (Tree Planting)   | Jerry Arter          | P. O. Box 25            | Tilly        | AR    | 72679      | (870) 496-2442 |                |                |
| Superior Forestry Services (Herbicide Appl) | Mark Harnage         | P. O. Box 25            | Tilly        | AR    | 72679      | (800) 541-1060 |                | (870) 496-2388 |
| Timberland Silvicultural Services           | Edward Taylor        | 1101 South Main         | Demopolis    | AL    | 36732      | (318) 352-7476 |                |                |
| Tommy Kessler                               | Tommy Kessler        | Box 816                 | Linden       | TX    | 75563      | (903) 756-7001 |                |                |
| Troy Jones                                  | Troy R. Jones        | 754 County Road 2164    | Shelbyville  | TX    | 75973      | (936) 275-1159 |                |                |
| UAP Distribution, Inc.                      | Cobbie Callaway      | 1101 South Memory Lane  | Marshall     | TX    | 75670      | (903) 926-5358 |                |                |
| Van Duson Timber Corp.                      | Gary Van Dusen       | 4015 Valley Ranch Rd.   | Longview     | TX    | 75602      | (903) 236-7696 |                |                |
| Vegetation Control                          | Randy Ward           | 123 Longhorn Dr.        | Palestine    | TX    | 75801      | (903) 723-1866 | (903) 723-1866 |                |

### Herbicide Application Vendors continued

| Company                                     | MobilePhone    | Email                              | Helicopter | Skidder | Tractor | FourWheeler | HandMethods | Broadcast | BandSpray | MinimumAcres |
|---------------------------------------------|----------------|------------------------------------|------------|---------|---------|-------------|-------------|-----------|-----------|--------------|
| Acorn Outdoor Services                      | (936) 438-2499 | aosinc@consolidated.net            | No         | Yes     | Yes     | Yes         | Yes         | Yes       | Yes       | 1            |
| Advanced Forestry Services                  |                | www.advancedforestryserv.com       | No         | No      | No      | Yes         | Yes         | No        | Yes       | 1            |
| AgRotors, Inc.                              | (717) 818-5139 | jcallison@agrotors.com             | Yes        | No      | No      | No          | No          | Yes       | No        | 1            |
| Bonner Reforestation                        | (936) 635-8450 |                                    | No         | No      | Yes     | No          | No          | No        | Yes       | 1            |
| Coastal Spray Company                       | (713) 825-9233 | josechavez@coastalspray.com        | No         | Yes     | Yes     | Yes         | Yes         | Yes       | Yes       | 1            |
| Don Taylor                                  |                |                                    | No         | No      | No      | No          | No          | No        | No        | 1            |
| George Whatley, Jr.                         |                |                                    | No         | No      | Yes     | No          | No          | Yes       | Yes       | 1            |
| Glasscock Enterprises                       |                | jackieglasscock@yahoo.com          | No         | No      | Yes     | Yes         | No          | No        | Yes       | 10           |
| Hagler Forestry                             |                | tara1@qzip.net                     | No         | Yes     | No      | Yes         | Yes         | Yes       | Yes       | 25           |
| IBF                                         | (903) 692-2406 | IBFTree@gmail.com                  | Yes        | Yes     | Yes     | Yes         | Yes         | Yes       | Yes       | 1            |
| Jimmy Glasscock Construction                | (903) 520-3302 |                                    | No         | No      | Yes     | No          | No          | Yes       | No        | 1            |
| McDonald Bro. Farms                         |                |                                    | No         | No      | Yes     | Yes         | No          | Yes       | Yes       | 10           |
| McIlvain Enterprises Inc.                   |                | lmcilv@aol.com                     | No         | No      | No      | Yes         | Yes         | No        | Yes       | 1            |
| Nelms Equipment & Reforestation             | (936) 546-8061 | Nelms1@yahoo.com                   | No         | No      | Yes     | Yes         | No          | Yes       | Yes       | 1            |
| Northstar Helicopter Inc                    |                | nshi@inu.net                       | Yes        | No      | No      | No          | No          | Yes       | No        | 1            |
| Parker Forestry Consultants                 |                | pfc@parkerforestry.com             | No         | No      | Yes     | Yes         | Yes         | Yes       | Yes       | 1            |
| Red River Specialties                       |                | mcagejr@hotmail.com                | Yes        | No      | No      | No          | No          | Yes       | No        | 20           |
| Silva-Tech/South, Ltd.                      | (936) 552-4807 | buddy@silvatechsouth.com           | Yes        | Yes     | No      | Yes         | No          | No        | No        | 1            |
| Superior Forestry Service (Tree Planting)   |                | sfs@superiorforestry.com           | No         | No      | No      | No          | No          | No        | No        | 1            |
| Superior Forestry Services (Herbicide Appl) | (501) 258-8649 | Superior.forestry@worldnet.att.net | No         | No      | No      | No          | Yes         | Yes       | Yes       | 1            |
| Timberland Silvicultural Services           | (936) 635-4429 |                                    | Yes        | Yes     | No      | Yes         | Yes         | Yes       | Yes       | 40           |
| Tommy Kessler                               |                |                                    | No         | No      | Yes     | No          | No          | Yes       | Yes       | 1            |
| Troy Jones                                  |                |                                    | No         | No      | No      | No          | No          | No        | Yes       | 1            |
| UAP Distribution, Inc.                      | (903) 926-5358 | cobbie.callaway@uap.com            | Yes        | Yes     | Yes     | Yes         | Yes         | Yes       | Yes       | 1            |
| Van Duson Timber Corp.                      |                | jv1053@aol.com                     | No         | Yes     | No      | Yes         | Yes         | Yes       | Yes       | 1            |
| Vegetation Control                          |                | rajhal@hotmail.com                 | No         | No      | No      | Yes         | No          | No        | Yes       | 1            |

# **Great Trinity Forest Management Plan**

# **Sources and Contacts**

Forest Services Vendor Database: Mechanical Site Prep Vendors

### Mechanical Site Prep Vendors

| Pope Dozer Inc.         Paul Pope         8708 W. Fox         Orange         TX         77632         (409) 781-3530         (409) 745-1045           Providence Land Services         Mark James         P. O. Box 329         Mt. Enterprise         TX         75681         (903) 822-4139           Quality Custom Dozer Service         Reno Garcia         P. O. Box 713         Buffalo         TX         75831         (903) 322-3080           Robert Lange, Inc.         Robert Lange         P. O. Box 1076         Brenham         TX         77834-1076         (979) 836-5633         (979) 836-3662           Rockin M Agri Services         Robert Lange         P. O. Box 1076         Brenham         TX         75973         (936) 275-2721         (936) 275-2721           Silva-Tech/South, Ltd.         Buddy Stalnaker         P. O. Box 633262         Nacogdoches         TX         75963         (936) 568-9031           Smith & Smith Forest Management, Inc.         David C. Smith         211 N. Main Street         Gladewater         TX         75647         (903) 844-9240           Strahan Dozer Service         Mike Wagstaff         P. O. Box 719         Warren         TX         77664         (409) 381-1423         (409) 547-0027           Strahan Dozer Service         Peter Tebbetts         1476 Hwy 111 <t< th=""><th>Company</th><th>Contact</th><th>Address</th><th>City</th><th>State</th><th>Zip</th><th>WorkPhone</th><th>HomePhone</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Company                               | Contact                      | Address                  | City           | State | Zip        | WorkPhone      | HomePhone      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------|--------------------------|----------------|-------|------------|----------------|----------------|
| Aushin Land Service   Allen Reed   11228 FM 138   Center   TX   78913   (32) 261-576   Reaver Dozer Service   Bubba Bonner   3198 Bethehem Road   Lufkin   TX   7593-573   (396) 875-3016   Reaver Dozer Service   Bubba Bonner   3198 Bethehem Road   Lufkin   TX   7590-48   (396) 875-3016   Reaver Construction   Billy Brewer   10305 US Hwy 69 N   Pollock   TX   7590-48   (396) 875-3016   Reaver Construction   Chris Tyre   3393 FM 417 East   Shelbyville   TX   75973   (396) 590-0271   Reaver Construction   P. O. Box 1125   Allanta   TX   75913   (396) 590-0271   Reaver Construction   P. O. Box 1125   Allanta   TX   75913   Reaver Construction   P. O. Box 1125   Allanta   TX   75913   Reaver Construction   P. O. Box 1125   Allanta   TX   75913   Reaver Construction   P. O. Box 840   Reaver Construction   P. O. Box 125   Reaver Construction   P. O. Box 126      | Acorn Outdoor Services                |                              |                          | Lufkin         |       |            | ` '            |                |
| Beaver Dozer Service   Allen Reed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Advantage Forestry, Inc               | Vic Cooper                   | 1099 Fm 3172             | Shelbyville    | TX    | 75973      | (936) 368-2839 |                |
| Bonner Reforestation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Austin Land Service                   |                              | 3875 W. Whitestone       | Cedar Park     |       | 78613      | (512) 260-1576 |                |
| Brewer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Beaver Dozer Service                  | Allen Reed                   | 11828 FM 138             | Center         | TX    | 75935-5718 | (936) 591-2247 | (936) 254-3146 |
| Bugs Dozer Service   Richard Weeks   2775 Hwy 190 E   Wordline   TX   75979   (409) 429-404   (409) 283-2373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bonner Reforestation                  | Bubba Bonner                 | 3198 Bethlehem Road      | Lufkin         | TX    | 75904      | (936) 875-3016 |                |
| Burrous   Dazer & Dirt Service   Robert Burrous   3167 Martin Cochran Rd   Luntington   TX   7594   (936) 422-3878   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-324)   (759-32   | Brewer Construction                   | Billy Brewer                 | 10305 US Hwy 69 N        | Pollock        | TX    | 75969      | (936) 853-4859 |                |
| C. T. Construction C. Schowly Crushing Burl Clem P. O. Box 1125 Allan TX 75973 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (936) 580-0271 (9 | Bugs Dozer Service                    | Richard Weeks                | 2775 Hwy 190 E           | Woodville      | TX    | 75979      | (409) 429-4041 | (409) 283-2373 |
| Cass County Crushing   Burt Clem   P. O. Box 1125   Atlanía   TX   75551   (903) 798-7911   (936) 563-4530   D & C Dozer Co.   Chris Collins & Stan Fleming   D & C Dozer Co.   Chris Collins & Stan Fleming   D & C Dozer Co.   Chris Collins & Stan Fleming   Silve Dover   Route 1 Box 1686   Shelbyville   TX   75935   (936) 590-4831   (936) 598-2201   D & C Dozer Co.   Chris Collins & Stan Fleming   Silve Dover   Route 1 Box 1686   Shelbyville   TX   75935   (936) 598-2369   (936) 368-2359   D V P D V P D Z P P P P P P P P P P P P P P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Burrous Dozer & Dirt Service          | Robert Burrous               | 3167 Martin Cochran Rd.  | Huntington     | TX    | 75949      | (936) 422-3878 |                |
| Circle H. Environmental   Paul Harrell   Paul Har   | C. T. Construction                    | Chris Tyre                   | 3393 FM 417 East         | Shelbyville    | TX    | 75973      | (936) 590-0271 |                |
| D & C Dozer Co.    Double O Contractors   Lary O Rear   Warren   Contractors   Lary O Rear   Robert M. Smith   P. O. Box 880   Canton   TX   75935   (393) 598-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388-2359   (393) 388- | Cass County Crushing                  | Burt Clem                    | P. O. Box 1125           | Atlanta        | TX    | 75551      | (903) 796-7911 |                |
| Double   Contractors   Larry O'Rear   Route   Box 1686   Shelbyville   TX   75973   (936) 368-2359   (936) 368-2359   Dover Dozer and Trucking   Steve Dover   Route   Box 666b   Route   Rout   | Circle H Environmental                | Paul Harrell                 | Route 3 Box 2020         | Livingston     | TX    | 77351      |                | (936) 563-4530 |
| Dover Dozer and Trucking   Steve Dover   Route 1, Box 66b   Rusk   TX   75785   (903) 883-6491   East Texas Brusters   Robert M. Smith   P. O. Box 880   Rusk   TX   7510-0880   (903) 470-3900   Revironmental Tree Shredding, L.P.   Kris Knackstedt   P. O. Box 1800   Kilgore   TX   75663   (903) 262-0909   Revironmental Tree Shredding, L.P.   Route 3 Box 2300   Rilgore   TX   75863   (903) 262-0909   Revironmental Tree Shredding, L.P.   Route 3 Box 2300   Rilgore   TX   75735   (903) 863-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 569-4805   (936) 563-4733   (936) 569-4805   (936) 563-4733   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805   (936) 569-4805     | D & C Dozer Co.                       | Chris Collins & Stan Fleming | 388 County Road 2565     | Center         | TX    | 75935      | (936) 590-4531 | (936) 598-2201 |
| East Taxas Bruish Busters   Robert M. Smith   P. O. Box 880   Canton   TX   75103-0880   (903) 479-3900   Environmental Tree Shredding, L.P.   Kris Knackstedt   P. O. Box 1042   Kilgore   TX   77563   (903) 262-0909   George Harrell Construction   James Glasscock   22904 Hwy 69 N   Mineola   TX   777351   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4765   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (93   | Double O Contractors                  | Larry O'Rear                 | Route 1 Box 1686         | Shelbyville    | TX    | 75973      | (936) 368-2359 | (936) 368-2359 |
| Environmental Tree Shredding, L.P.   Kris Knackstedt   P. O. Box 1042   Kilgore   TX   75663   (903) 262-0909   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4   | Dover Dozer and Trucking              | Steve Dover                  | Route 1, Box 66b         | Rusk           | TX    | 75785      | (903) 683-5491 |                |
| George Harrell Construction   Casscock   James Glasscock   22904 Hwy 69 N   Mineola   TX   77351   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 563-4733   (936) 5   | East Texas Brush Busters              | Robert M. Smith              | P. O. Box 880            | Canton         | TX    | 75103-0880 | (903) 479-3900 |                |
| Glasscock Enterprises   James Glasscock   22904 Hwy 69 N   Mineola   TX   75773   (903) 882-9532   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 598-4805   (936) 5   | Environmental Tree Shredding, L.P.    | Kris Knackstedt              | P. O. Box 1042           | Kilgore        | TX    | 75663      | (903) 262-0909 |                |
| Hagler Forestry   830 CR 1092   Center   TX   75935   (936) 598-4805   (936) 598-4805   Halley Dozer Contractor   Chad Haley   P. O. Box 12   Center   TX   75935   (936) 598-9167   Hans Schipmann   Hans Schipmann   Harbore   Hans Schipmann   Hans Male Male Male Male Male Male Male Male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | George Harrell Construction           |                              | Route 3 Box 2300         | Livingston     | TX    | 77351      | (936) 563-4733 | (936) 563-4733 |
| Haley   Dozer Contractor   Chad Haley   P. O. Box 12   Center   TX   75935   (936) 598-9167   Hans Schipmann   Hans Schipmann   14723 Tanglewood   Dallas   TX   75234   (972) 243-5843   Holland   147 N Peachtree   Jasper   TX   75951   (409) 384-0232   (409) 383-0504   Holland Equipment   Willard Holland   P. O. Box 151   Pennington   TX   75856   (409) 638-4455   Holland Equipment   Willard Holland   P. O. Box 155   Carthage   TX   75856   (409) 638-4455   Garthage   TX   75856   (409) 638-4455   Garthage   TX   77447   (936) 931-9372   Jimmy Glasscock Construction   Jimmy Glasscock   P. O. Box 561   Lindale   TX   77771   (936) 931-9372   Jimmy Glasscock Construction   Jimmy Glasscock   P. O. Box 561   Lindale   TX   77771   (936) 931-9372   Jimmy Glasscock Construction   Charles Kelley   P. O. Box 1606   Cleveland   TX   777871   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882-6021   (903) 882   | Glasscock Enterprises                 | James Glasscock              | 22904 Hwy 69 N           | Mineola        | TX    | 75773      | (903) 882-3532 |                |
| Hans Schipmann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hagler Forestry                       |                              | 830 CR 1092              | Center         | TX    | 75935      | (936) 598-4805 | (936) 598-4805 |
| Holland Dozer Sevice   Nathan Holland   147 N Peachtree   Jasper   TX   75951   (409) 384-0232   (409) 383-0504   Holland Equipment   Willard Holland   P. O. Box 151   Pennington   TX   75856   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   | Haley Dozer Contractor                | Chad Haley                   | P. O. Box 12             | Center         | TX    | 75935      | (936) 598-9167 |                |
| Holland Equipment   Millard Holland   P. O. Box 151   Pennington   TX   75856   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638-4455   (409) 638   | Hans Schipmann                        | Hans Schipmann               | 14723 Tanglewood         | Dallas         | TX    | 75234      | (972) 243-5843 |                |
| BF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Holland Dozer Sevice                  | Nathan Holland               | 147 N Peachtree          | Jasper         | TX    | 75951      | (409) 384-0232 | (409) 383-0504 |
| James Bond Custom Land Clearing         James or Desirae Bond         26050 Brushy Creek Drive         Hockley         TX         77447         (936) 931-9372         Jimmy Glasscock         P. O. Box 561         Lindale         TX         75771         (903) 882-6021         (903) 882-6021         (281) 592-7647           Mayo Dozer Service         Martin Stanaland         669 Cr 264         Nacogdoches         TX         75965         (936) 652-7285         (936) 624-6791         (281) 592-7647           Moore Dozing         Herman Moore         Route 2 Box 181-A         Crockett         TX         75835         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Holland Equipment                     | Willard Holland              | P. O. Box 151            | Pennington     | TX    | 75856      | (409) 638-4455 | (409) 638-4455 |
| Jimmy Glasscock Construction         Jimmy Glasscock         P. O. Box 561         Lindale         TX         75771         (903) 882-6021         (903) 882-6021           Kellico Construction         Charles Kelley         P. O. Box 1606         Cleveland         TX         75771         (903) 882-6021         (281) 592-7647           Mayo Dozer Service         Martin Stanaland         669 Cr 264         Nacogdoches         TX         75965         (936) 652-7285           Moore Dozing         Herman Moore         Route 2 Box 181-A         Crockett         TX         75935         (936) 624-6791         (936) 624-6791           Nelms Equipment & Reforestation         Jason Nelms         P. O. Box 5         Pennington         TX         75835         (936) 638-2072         (936) 624-6791           Pope Dozer Inc.         Paul Pope         8708 W. Fox         Orange         TX         75686         (936) 638-2072         (409) 745-1045           Providence Land Services         Mark James         P. O. Box 329         Mt. Enterprise         TX         75681         (903) 322-4139         (409) 745-1045           Robert Lange, Inc.         Reno Garcia         P. O. Box 713         Buffalo         TX         75831         (903) 322-3080         (979) 836-3362           Southwest Silvia-Tech/South, Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IBF                                   | Matthew L. Buchanan          | P. O. Box 165            | Carthage       | TX    | 75633      | (903) 693-4929 |                |
| Kellcó Construction         Charlés Kelley         P. O. Box 1606         Cleveland         TX         77327         (281) 592-7647           Mayo Dozer Service         Martin Stanaland         669 Cr 264         Nacogdoches         TX         75965         (936) 552-7285         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 624-6791         (936) 638-2072         (936) 624-6791         (936) 638-2072         (936) 638-2072         (936) 638-2072         (936) 638-2072         (936) 638-2072         (936) 638-2072         (936) 638-2072         (936) 252-7385         (936) 638-2072         (936) 252-7385         (936) 638-2072         (936) 252-7385         (936) 638-2072         (936) 252-7385         (936) 252-7385         (936) 252-7385         (936) 252-7385         (936) 252-7385         (936) 252-7385         (936) 252-7385         (936) 252-3385         (936) 252-3385 <td< td=""><td>James Bond Custom Land Clearing</td><td>James or Desirae Bond</td><td>26050 Brushy Creek Drive</td><td>Hockley</td><td>TX</td><td>77447</td><td>(936) 931-9372</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                               | James Bond Custom Land Clearing       | James or Desirae Bond        | 26050 Brushy Creek Drive | Hockley        | TX    | 77447      | (936) 931-9372 |                |
| Mayo Dozer Service         Martin Stanaland         669 Cr 264         Nacogdoches         TX         75965         (936) 552-7285           Moore Dozing         Herman Moore         Route 2 Box 181-A         Crockett         TX         75835         (936) 624-6791         (936) 624-6791           Nelms Equipment & Reforestation         Jason Nelms         P. O. Box 5         Pennington         TX         75856         (936) 624-6791         (936) 624-6791           Pope Dozer Inc.         Paul Pope         8708 W. Fox         Orange         TX         75856         (936) 822-4139         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530         (409) 781-3530 <td>Jimmy Glasscock Construction</td> <td>Jimmy Glasscock</td> <td>P. O. Box 561</td> <td>Lindale</td> <td>TX</td> <td>75771</td> <td>(903) 882-6021</td> <td>(903) 882-6021</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jimmy Glasscock Construction          | Jimmy Glasscock              | P. O. Box 561            | Lindale        | TX    | 75771      | (903) 882-6021 | (903) 882-6021 |
| Moore Dozing         Herman Moore         Route 2 Box 181-A         Crockett         TX         75835         (936) 624-6791         (936) 624-6791           Nelms Equipment & Reforestation         Jason Nelms         P. O. Box 5         Pennington         TX         75856         (936) 638-2072           Pope Dozer Inc.         Paul Pope         8708 W. Fox         Orange         TX         77632         (409) 781-3530         (409) 745-1045           Providence Land Services         Mark James         P. O. Box 329         Mt. Enterprise         TX         75831         (903) 822-4139           Quality Custom Dozer Service         Reno Garcia         P. O. Box 1076         Brenham         TX         75831         (903) 322-3080           Robert Lange, Inc.         Robert Lange         P. O. Box 1076         Brenham         TX         75973         (936) 275-2721         (936) 275-2721           Silva-Tech/South, Ltd.         Buddy Stalnaker         P. O. Box 633262         Nacogdoches         TX         75963         (936) 568-9031           Smith & Smith Forest Management, Inc.         David C. Smith         211 N. Main Street         Gladewater         TX         75647         (903) 844-9240           Southwest Silviculture         Mike Wagstaff         P. O. Box 719         Warren         TX <td>Kellco Construction</td> <td>Charles Kelley</td> <td>P. O. Box 1606</td> <td>Cleveland</td> <td>TX</td> <td>77327</td> <td></td> <td>(281) 592-7647</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kellco Construction                   | Charles Kelley               | P. O. Box 1606           | Cleveland      | TX    | 77327      |                | (281) 592-7647 |
| Nelms Equipment & Reforestation   Jason Nelms   P. O. Box 5   Pennington   TX   75856   (936) 638-2072   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (409) 745-1045   (   | Mayo Dozer Service                    | Martin Stanaland             | 669 Cr 264               | Nacogdoches    | TX    | 75965      | (936) 552-7285 |                |
| Pope Dozer Inc.         Paul Pope         8708 W. Fox         Orange         TX         77632         (409) 781-3530         (409) 745-1045           Providence Land Services         Mark James         P. O. Box 329         Mt. Enterprise         TX         75681         (903) 822-4139           Quality Custom Dozer Service         Reno Garcia         P. O. Box 713         Buffalo         TX         75831         (903) 322-3080           Robert Lange, Inc.         Robert Lange         P. O. Box 1076         Brenham         TX         77834-1076         (979) 836-5633         (979) 836-3362           Rockin M Agri Services         Robert Lange         P. O. Box 1076         Brenham         TX         75973         (936) 275-2721         (936) 275-2721           Silva-Tech/South, Ltd.         Buddy Stalnaker         P. O. Box 633262         Nacogdoches         TX         75963         (936) 568-9031           Smith & Smith Forest Management, Inc.         David C. Smith         211 N. Main Street         Gladewater         TX         75647         (903) 844-9240           Strahan Dozer Service         Mike Wagstaff         P. O. Box 719         Warren         TX         77664         (409) 381-1423         (409) 547-0027           Strahan Dozer Service         Peter Tebbetts         1476 Hwy 111 <t< td=""><td>Moore Dozing</td><td>Herman Moore</td><td>Route 2 Box 181-A</td><td>Crockett</td><td>TX</td><td>75835</td><td>(936) 624-6791</td><td>(936) 624-6791</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Moore Dozing                          | Herman Moore                 | Route 2 Box 181-A        | Crockett       | TX    | 75835      | (936) 624-6791 | (936) 624-6791 |
| Providence Land Services         Mark James         P. O. Box 329         Mt. Enterprise         TX         75681         (903) 822-4139           Quality Custom Dozer Service         Reno Garcia         P. O. Box 713         Buffalo         TX         75831         (903) 322-3080           Robert Lange, Inc.         Robert Lange         P. O. Box 1076         Brenham         TX         77834-1076         (979) 836-5633         (979) 836-3362           Rockin M Agri Services         Rt 2 Box 197 C         Shelbyville         TX         75973         (936) 275-2721         (936) 275-2721           Silva-Tech/South, Ltd.         Buddy Stalnaker         P. O. Box 633262         Nacogdoches         TX         75963         (936) 568-9031           Smith & Smith Forest Management, Inc.         David C. Smith         211 N. Main Street         Gladewater         TX         75647         (903) 844-9240           Southwest Silviculture         Mike Wagstaff         P. O. Box 719         Warren         TX         77664         (409) 381-1423         (409) 547-0027           Strahan Dozer Service         Robbie Strahan         652 CR 4714         Timpson         TX         75975         (936) 254-3238         (936) 254-3238           Tebetts Dozer Service         Peter Tebbetts         1476 Hwy 111         Leesville </td <td>Nelms Equipment &amp; Reforestation</td> <td>Jason Nelms</td> <td>P. O. Box 5</td> <td>Pennington</td> <td>TX</td> <td>75856</td> <td>(936) 638-2072</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nelms Equipment & Reforestation       | Jason Nelms                  | P. O. Box 5              | Pennington     | TX    | 75856      | (936) 638-2072 |                |
| Quality Custom Dozer Service         Reno Garcia         P. O. Box 713         Buffalo         TX         75831         (903) 322-3080           Robert Lange, Inc.         Robert Lange         P. O. Box 1076         Brenham         TX         77834-1076         (979) 836-5633         (979) 836-3362           Rockin M Agri Services         Rt 2 Box 197 C         Shelbyville         TX         75973         (936) 275-2721         (936) 275-2721           Silva-Tech/South, Ltd.         Buddy Stalnaker         P. O. Box 633262         Nacogdoches         TX         75963         (936) 568-9031           Silva-Tech/South, Ltd.         David C. Smith         211 N. Main Street         Gladewater         TX         75963         (936) 568-9031           Swith & Smith Forest Management, Inc.         David C. Smith         211 N. Main Street         Gladewater         TX         75647         (903) 844-9240           Southwest Silviculture         Mike Wagstaff         P. O. Box 719         Warren         TX         75647         (903) 844-9240           Strahan Dozer Service         Robbie Strahan         652 CR 4714         Timpson         TX         75975         (936) 254-3238         (936) 254-3238           Tebetts Dozer Service         Peter Tebbetts         1476 Hwy 111         Leesville         LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pope Dozer Inc.                       | Paul Pope                    | 8708 W. Fox              | Orange         | TX    | 77632      | (409) 781-3530 | (409) 745-1045 |
| Robert Lange, Inc.         Robert Lange         P. O. Box 1076         Brenham         TX         77834-1076         (979) 836-5633         (979) 836-3362           Rockin M Agri Services         Rt 2 Box 197 C         Shelbyville         TX         75973         (936) 275-2721         (936) 275-2721           Silva-Tech/South, Ltd.         Buddy Stalnaker         P. O. Box 633262         Nacogdoches         TX         75963         (936) 568-9031           Smith & Smith Forest Management, Inc.         David C. Smith         211 N. Main Street         Gladewater         TX         75647         (903) 844-9240           Southwest Silviculture         Mike Wagstaff         P. O. Box 719         Warren         TX         77664         (409) 381-1423         (409) 547-0027           Strahan Dozer Service         Robbie Strahan         652 CR 4714         Timpson         TX         75975         (936) 254-3238         (936) 254-3238           Tebbetts Dozer Service         Peter Tebbetts         1476 Hwy 111         Leesville         LA         71446         (337) 238-4392         (36) 254-3238           Texas Land Clearing Company         Tim Burgess         6010 Almelo Drive         Round Rock         TX         78681         (512) 217-8845           Thomas Dozer & Construction         Derrell Thomas         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Providence Land Services              | Mark James                   | P. O. Box 329            | Mt. Enterprise | TX    | 75681      | (903) 822-4139 |                |
| Rockin M Agri Services         Rt 2 Box 197 C         Shelbyville         TX         75973         (936) 275-2721         (936) 275-2721           Silva-Tech/South, Ltd.         Buddy Stalnaker         P. O. Box 633262         Nacogdoches         TX         75963         (936) 568-9031           Smith & Smith Forest Management, Inc.         David C. Smith         211 N. Main Street         Gladewater         TX         75647         (903) 844-9240           Southwest Silviculture         Mike Wagstaff         P. O. Box 719         Warren         TX         77664         (409) 381-1423         (409) 547-0027           Strahan Dozer Service         Robbie Strahan         652 CR 4714         Timpson         TX         75975         (936) 254-3238         (936) 254-3238           Tebbetts Dozer Service         Peter Tebbetts         1476 Hwy 111         Leesville         LA         71446         (337) 238-4392           Texas Land Clearing Company         Tim Burgess         6010 Almelo Drive         Round Rock         TX         78681         (512) 217-8845           Thomas Dozer & Construction         Derrell Thomas         24042 Stanart Rd.         Porter         TX         75803-7088         (903) 723-3999         (903) 723-2892           Timber Heights Forestry         P. O. Box 2412         Jasper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quality Custom Dozer Service          | Reno Garcia                  | P. O. Box 713            | Buffalo        | TX    | 75831      | (903) 322-3080 |                |
| Silva-Tech/South, Ltd.         Buddy Stalnaker         P. O. Box 633262         Nacogdoches         TX         75963         (936) 568-9031           Smith & Smith Forest Management, Inc.         David C. Smith         211 N. Main Street         Gladewater         TX         75647         (903) 844-9240           Southwest Silviculture         Mike Wagstaff         P. O. Box 719         Warren         TX         77664         (409) 381-1423         (409) 547-0027           Strahan Dozer Service         Robbie Strahan         652 CR 4714         Timpson         TX         75975         (936) 254-3238         (936) 254-3238           Tebbetts Dozer Service         Peter Tebbetts         1476 Hwy 111         Leesville         LA         71446         (337) 238-4392           Texas Land Clearing Company         Tim Burgess         6010 Almelo Drive         Round Rock         TX         78681         (512) 217-8845           Texas Land Clearing, Inc.         Ike Jackson         24042 Stanart Rd.         Porter         TX         77365         (281) 354-5108         (281) 354-5808           Thomas Dozer & Construction         Derrell Thomas         300 Trimble         Palestine         TX         75903 (903) 723-3999         (903) 723-3999         (903) 723-3999         (903) 723-2822           Timber land Silvicultural Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Robert Lange, Inc.                    | Robert Lange                 | P. O. Box 1076           | Brenham        |       | 77834-1076 | (979) 836-5633 | (979) 836-3362 |
| Smith & Smith Forest Management, Inc.         David C. Smith Mike Wagstaff         211 N. Main Street         Gladewater TX         TX         75647         (903) 844-9240           Southwest Silviculture         Mike Wagstaff         P. O. Box 719         Warren         TX         77664         (409) 381-1423         (409) 547-0027           Strahan Dozer Service         Robbie Strahan         652 CR 4714         Timpson         TX         75975         (936) 254-3238         (936) 254-3238           Tebbetts Dozer Service         Peter Tebbetts         1476 Hwy 111         Leesville         LA         71446         (337) 238-4392           Texas Land Clearing Company         Tim Burgess         6010 Almelo Drive         Round Rock         TX         78681         (512) 217-8845           Texas Land Clearing, Inc.         Ike Jackson         24042 Stanart Rd.         Porter         TX         77365         (281) 354-5108         (281) 354-5808           Thomas Dozer & Construction         Derrell Thomas         300 Trimble         Palestine         TX         75803-7088         (993) 723-3999         (903) 723-2822           Timber Heights Forestry         P. O. Box 2412         Jasper         TX         75951         (409) 383-1090           Timberland Silvicultural Services         Edward Taylor         1101 South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rockin M Agri Services                |                              | Rt 2 Box 197 C           | Shelbyville    | TX    | 75973      | (936) 275-2721 | (936) 275-2721 |
| Southwest Silviculture         Mike Wagstaff         P. O. Box 719         Warren         TX         77664         (409) 381-1423         (409) 547-0027           Strahan Dozer Service         Robbie Strahan         652 CR 4714         Timpson         TX         75975         (936) 254-3238         (936) 254-3238           Tebbetts Dozer Service         Peter Tebbetts         1476 Hwy 111         Leesville         LA         71446         (337) 238-4392         Feast Land Clearing Company         Tim Burgess         6010 Almelo Drive         Round Rock         TX         78681         (512) 217-8845         Feast Land Clearing, Inc.         Ike Jackson         24042 Stanart Rd.         Porter         TX         77365         (281) 354-5108         (281) 354-5808           Thomas Dozer & Construction         Derrell Thomas         300 Trimble         Palestine         TX         75803-7088         (903) 723-3999         (903) 723-2822           Timber Heights Forestry         P. O. Box 2412         Jasper         TX         75951         (409) 383-1090           Timberland Silvicultural Services         Edward Taylor         1101 South Main         Demopolis         AL         36732         (318) 352-7476           Tommy Kessler         Tommy Kessler         Box 816         Linden         TX         75563         (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Silva-Tech/South, Ltd.                | Buddy Stalnaker              | P. O. Box 633262         | Nacogdoches    | TX    | 75963      | (936) 568-9031 |                |
| Strahan Dozer Service         Robbie Strahan         652 CR 4714         Timpson         TX         75975         (936) 254-3238         (936) 254-3238           Tebbetts Dozer Service         Peter Tebbetts         1476 Hwy 111         Leesville         LA         71446         (337) 238-4392           Texas Land Clearing Company         Tim Burgess         6010 Almelo Drive         Round Rock         TX         78681         (512) 217-8845           Texas Land Clearing, Inc.         Ike Jackson         24042 Stanart Rd.         Porter         TX         77365         (281) 354-5108         (281) 354-5808           Thomas Dozer & Construction         Derrell Thomas         300 Trimble         Palestine         TX         75803-7088         (903) 723-3999         (903) 723-2822           Timber Heights Forestry         P. O. Box 2412         Jasper         TX         75951         (409) 383-1090           Timberland Silvicultural Services         Edward Taylor         1101 South Main         Demopolis         AL         36732         (318) 352-7476           Tommy Kessler         Tommy Kessler         Box 816         Linden         TX         75563         (903) 756-7001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Smith & Smith Forest Management, Inc. | David C. Smith               | 211 N. Main Street       | Gladewater     | TX    | 75647      | (903) 844-9240 |                |
| Tebbetts Dozer Service         Peter Tebbetts         1476 Hwy 111         Leesville         LA         71446         (337) 238-4392           Texas Land Clearing Company         Tim Burgess         6010 Almelo Drive         Round Rock         TX         78681         (512) 217-8845           Texas Land Clearing, Inc.         Ike Jackson         24042 Stanart Rd.         Porter         TX         77365         (281) 354-5108         (281) 354-5808           Thomas Dozer & Construction         Derrell Thomas         300 Trimble         Palestine         TX         75803-7088         (903) 723-3999         (903) 723-2822           Timber Heights Forestry         P. O. Box 2412         Jasper         TX         75951         (409) 383-1090           Timberland Silvicultural Services         Edward Taylor         1101 South Main         Demopolis         AL         36732         (318) 352-7476           Tommy Kessler         Tommy Kessler         Box 816         Linden         TX         75563         (903) 756-7001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Southwest Silviculture                | Mike Wagstaff                | P. O. Box 719            | Warren         | TX    | 77664      | (409) 381-1423 | (409) 547-0027 |
| Texas Land Clearing Company         Tim Burgess         6010 Almelo Drive         Round Rock         TX         78681         (512) 217-8845           Texas Land Clearing, Inc.         Ike Jackson         24042 Stanart Rd.         Porter         TX         77365         (281) 354-5108         (281) 354-5808           Thomas Dozer & Construction         Derrell Thomas         300 Trimble         Palestine         TX         75803-7088         (903) 723-3999         (903) 723-2822           Timber Heights Forestry         P. O. Box 2412         Jasper         TX         75951         (409) 383-1090           Timberland Silvicultural Services         Edward Taylor         1101 South Main         Demopolis         AL         36732         (318) 352-7476           Tommy Kessler         Tommy Kessler         Box 816         Linden         TX         75563         (903) 756-7001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Strahan Dozer Service                 | Robbie Strahan               | 652 CR 4714              | Timpson        | TX    | 75975      | (936) 254-3238 | (936) 254-3238 |
| Texas Land Clearing, Inc.         Ike Jackson         24042 Stanart Rd.         Porter         TX         77365         (281) 354-5108         (281) 354-5808           Thomas Dozer & Construction         Derrell Thomas         300 Trimble         Palestine         TX         75803-7088         (903) 723-3999         (903) 723-2822           Timber Heights Forestry         P. O. Box 2412         Jasper         TX         75951         (409) 383-1090           Timberland Silvicultural Services         Edward Taylor         1101 South Main         Demopolis         AL         36732         (318) 352-7476           Tommy Kessler         Tommy Kessler         Box 816         Linden         TX         75563         (903) 756-7001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tebbetts Dozer Service                | Peter Tebbetts               | 1476 Hwy 111             | Leesville      |       |            | (337) 238-4392 |                |
| Thomas Dozer & Construction         Derrell Thomas         300 Trimble         Palestine         TX         75803-7088         (903) 723-3999         (903) 723-2822           Timber Heights Forestry         P. O. Box 2412         Jasper         TX         75951         (409) 383-1090           Timberland Silvicultural Services         Edward Taylor         1101 South Main         Demopolis         AL         36732         (318) 352-7476           Tommy Kessler         Box 816         Linden         TX         75563         (903) 756-7001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Texas Land Clearing Company           | Tim Burgess                  | 6010 Almelo Drive        | Round Rock     |       |            | (512) 217-8845 |                |
| Timber Heights Forestry         P. O. Box 2412         Jasper         TX         75951         (409) 383-1090           Timberland Silvicultural Services         Edward Taylor         1101 South Main         Demopolis         AL         36732         (318) 352-7476           Tommy Kessler         Box 816         Linden         TX         75563         (903) 756-7001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Texas Land Clearing, Inc.             | Ike Jackson                  | 24042 Stanart Rd.        | Porter         | TX    | 77365      | (281) 354-5108 | (281) 354-5808 |
| Timberland Silvicultural Services Edward Taylor 1101 South Main Demopolis AL 36732 (318) 352-7476 Tommy Kessler Box 816 Linden TX 75563 (903) 756-7001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thomas Dozer & Construction           | Derrell Thomas               | 300 Trimble              | Palestine      | TX    | 75803-7088 | (903) 723-3999 | (903) 723-2822 |
| Tommy Kessler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Timber Heights Forestry               |                              | P. O. Box 2412           | Jasper         | TX    | 75951      | (409) 383-1090 |                |
| , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Timberland Silvicultural Services     | Edward Taylor                | 1101 South Main          | Demopolis      |       | 36732      | (318) 352-7476 |                |
| Van Duson Timber Corp. Gary Van Dusen 4015 Valley Ranch Rd. Longview TX 75602 (903) 236-7696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tommy Kessler                         | Tommy Kessler                |                          | Linden         |       |            |                |                |
| van basen minder corp. Sary van basen 4010 valley randi ra. Longview 17. 75002 (505) 250-7050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Van Duson Timber Corp.                | Gary Van Dusen               | 4015 Valley Ranch Rd.    | Longview       | TX    | 75602      | (903) 236-7696 |                |

### Mechanical Site Prep Vendors continued

| Company                               | Fax            | MobilePhone    | Email                            | Shear | Rake | Bed | CombinationPlow | Subsoil/Rip | Scalp |
|---------------------------------------|----------------|----------------|----------------------------------|-------|------|-----|-----------------|-------------|-------|
| Acorn Outdoor Services                | (936) 875-5401 | (936) 438-2499 | aosinc@consolidated.net          | Yes   | Yes  | Yes | Yes             | Yes         | Yes   |
| Advantage Forestry, Inc               | (936) 368-2839 | (936) 591-4099 |                                  | Yes   | Yes  | Yes | Yes             | Yes         | No    |
| Austin Land Service                   | (512) 259-6482 |                | info@austinwoodrecylcing.com     | No    | No   | No  | No              | No          | No    |
| Beaver Dozer Service                  | (936) 254-3460 |                |                                  | Yes   | Yes  | Yes | Yes             | Yes         | Yes   |
| Bonner Reforestation                  | . ,            | (936) 635-8450 |                                  | No    | Yes  | No  | No              | No          | No    |
| Brewer Construction                   | (936) 853-4869 | , ,            |                                  | Yes   | Yes  | Yes | No              | Yes         | No    |
| Bugs Dozer Service                    | ,              |                |                                  | Yes   | Yes  | No  | Yes             | No          | No    |
| Burrous Dozer & Dirt Service          |                |                |                                  | No    | Yes  | Yes | No              | No          | No    |
| C. T. Construction                    |                | (936) 590-9961 |                                  | Yes   | Yes  | No  | No              | Yes         | No    |
| Cass County Crushing                  | (903) 796-7911 | ,              |                                  | Yes   | No   | No  | No              | Yes         | No    |
| Circle H Environmental                | ,              |                |                                  | Yes   | Yes  | No  | No              | No          | No    |
| D & C Dozer Co.                       | (936) 590-4531 | (936) 590-0941 | ddnfleming@aol.com               | Yes   | Yes  | Yes | No              | No          | No    |
| Double O Contractors                  | ,              | ,              | 30                               | Yes   | Yes  | No  | No              | Yes         | No    |
| Dover Dozer and Trucking              | (903) 683-5033 | (903) 727-7005 |                                  | Yes   | Yes  | No  | No              | No          | No    |
| East Texas Brush Busters              | (903) 479-3638 | (214) 215-1369 | www.EastTexasBrushBusters.com    | No    | No   | No  | No              | No          | No    |
| Environmental Tree Shredding, L.P.    | (903) 984-0850 | ,              | texastreeshredding@earthlink.net | Yes   | Yes  | Yes | No              | Yes         | No    |
| George Harrell Construction           | (936) 563-2044 |                | 50                               | Yes   | Yes  | No  | No              | No          | No    |
| Glasscock Enterprises                 | (,             |                | jackieglasscock@yahoo.com        | Yes   | Yes  | No  | No              | Yes         | No    |
| Hagler Forestry                       | (936) 590-4843 |                | tara1@gzip.net                   | Yes   | Yes  | No  | No              | No          | No    |
| Haley Dozer Contractor                | (,             | (936) 590-0646 |                                  | Yes   | Yes  | No  | No              | No          | No    |
| Hans Schipmann                        |                | (,             |                                  | No    | No   | No  | No              | No          | No    |
| Holland Dozer Sevice                  | (409) 489-0465 | (409) 489-6153 | holland@inu.net                  | Yes   | Yes  | Yes | Yes             | Yes         | No    |
| Holland Equipment                     | (409) 638-4334 | ( ,            | cholland@txucom.net              | Yes   | Yes  | No  | Yes             | No          | No    |
| IBF                                   | (903) 693-3161 | (903) 692-2406 | IBFTree@gmail.com                | Yes   | Yes  | Yes | Yes             | Yes         | Yes   |
| James Bond Custom Land Clearing       | (936) 931-3724 | (713) 206-1427 | riverrat@ev1.net                 | No    | No   | No  | No              | No          | No    |
| Jimmy Glasscock Construction          | (903) 882-6021 | (903) 520-3302 |                                  | Yes   | Yes  | Yes | Yes             | Yes         | No    |
| Kellco Construction                   | (,             | (,             |                                  | Yes   | Yes  | No  | No              | No          | No    |
| Mayo Dozer Service                    |                | (936) 552-1392 |                                  | No    | Yes  | No  | No              | No          | No    |
| Moore Dozing                          | (936) 624-6791 | (,             |                                  | Yes   | Yes  | Yes | Yes             | Yes         | No    |
| Nelms Equipment & Reforestation       | (936) 638-2093 | (936) 546-8061 | Nelms1@yahoo.com                 | Yes   | Yes  | Yes | Yes             | Yes         | No    |
| Pope Dozer Inc.                       | (409) 489-1031 | ,              | 3,                               | Yes   | Yes  | No  | Yes             | Yes         | No    |
| Providence Land Services              | ,              | (903) 649-1729 |                                  | No    | No   | No  | No              | No          | No    |
| Quality Custom Dozer Service          | (903) 322-4743 | (903) 388-8585 |                                  | Yes   | Yes  | Yes | Yes             | Yes         | Yes   |
| Robert Lange, Inc.                    | (979) 836-5634 | ,              | robertlange@msn.com              | Yes   | Yes  | No  | No              | No          | No    |
| Rockin M Agri Services                | (936) 275-2721 |                | 5 6                              | Yes   | Yes  | No  | Yes             | No          | No    |
| Silva-Tech/South, Ltd.                | (936) 568-9031 | (936) 552-4807 | buddy@silvatechsouth.com         | No    | No   | No  | No              | No          | No    |
| Smith & Smith Forest Management, Inc. | (903) 844-9278 | ,              | ,                                | Yes   | Yes  | No  | No              | No          | No    |
| Southwest Silviculture                | (936) 967-4230 |                | macstaff@pernet.net              | Yes   | Yes  | Yes | Yes             | No          | Yes   |
| Strahan Dozer Service                 | (936) 248-4630 |                | O.                               | Yes   | Yes  | No  | No              | No          | No    |
| Tebbetts Dozer Service                | ,              | (337) 526-4599 | ptebbett@bellsouth.net           | Yes   | Yes  | Yes | No              | Yes         | No    |
| Texas Land Clearing Company           |                | (512) 217-8845 | tpburgess@austin.rr.com          | Yes   | No   | No  | No              | Yes         | No    |
| Texas Land Clearing, Inc.             | (281) 354-3474 | ,              |                                  | Yes   | Yes  | No  | No              | No          | No    |
| Thomas Dozer & Construction           | (903) 727-8643 | (903) 724-3363 | dttt@flash.net                   | Yes   | Yes  | No  | No              | Yes         | No    |
| Timber Heights Forestry               | (409) 383-1090 | ,,             | <b>9</b> - 1 - 1                 | No    | Yes  | No  | No              | No          | No    |
| Timberland Silvicultural Services     | . ,            | (936) 635-4429 |                                  | Yes   | No   | Yes | Yes             | Yes         | No    |
| Tommy Kessler                         |                | , ,            |                                  | No    | Yes  | No  | No              | No          | No    |
| Van Duson Timber Corp.                |                |                | jv1053@aol.com                   | Yes   | Yes  | No  | Yes             | No          | No    |
|                                       |                |                | ,                                |       |      |     |                 | -           |       |

### Mechanical Site Prep Vendors continued

|                                                              | Mechanical Site Prep Vendors continued |          |     |            |              |  |  |  |
|--------------------------------------------------------------|----------------------------------------|----------|-----|------------|--------------|--|--|--|
| Company                                                      | DrumChop                               | Disk     | Mow | Firebreaks | MinimumAcres |  |  |  |
| Acorn Outdoor Services                                       | Yes                                    | Yes      | Yes | Yes        | 1            |  |  |  |
| Advantage Forestry, Inc                                      | No                                     | Yes      | No  | Yes        | 1            |  |  |  |
| Austin Land Service                                          | Yes                                    | No       | No  | No         | 10           |  |  |  |
| Beaver Dozer Service                                         | Yes                                    | No       | No  | Yes        | 25           |  |  |  |
| Bonner Reforestation                                         | No                                     | No       | No  | Yes        | 1            |  |  |  |
| Brewer Construction                                          | Yes                                    | No       | Yes | Yes        | 1            |  |  |  |
| Bugs Dozer Service                                           | Yes                                    | No       | No  | Yes        | 1            |  |  |  |
| Burrous Dozer & Dirt Service                                 | No                                     | No       | Yes | No         | 1            |  |  |  |
| C. T. Construction                                           | Yes                                    | No       | Yes | Yes        | 1            |  |  |  |
| Cass County Crushing                                         | No                                     | No       | No  | No         | 20           |  |  |  |
| Circle H Environmental                                       | Yes                                    | No       | No  | Yes        | 25           |  |  |  |
| D & C Dozer Co.                                              | No                                     | No       | No  | Yes        | 30           |  |  |  |
| Double O Contractors                                         | Yes                                    | No       | No  | Yes        | 1            |  |  |  |
| Dover Dozer and Trucking                                     | No                                     | No       | No  | Yes        | 1            |  |  |  |
| East Texas Brush Busters                                     | No                                     | No       | No  | Yes        | 1            |  |  |  |
| Environmental Tree Shredding, L.P.                           | Yes                                    | Yes      | Yes | Yes        | 1            |  |  |  |
| George Harrell Construction                                  | No                                     | No       | No  | No         | 1            |  |  |  |
| Glasscock Enterprises                                        | No                                     | No       | No  | No         | 10           |  |  |  |
| Hagler Forestry                                              | No                                     | No       | No  | Yes        | 25           |  |  |  |
| Haley Dozer Contractor                                       | No                                     | No       | No  | Yes        | 1            |  |  |  |
| Hans Schipmann                                               | No                                     | No       | No  | Yes        | 1            |  |  |  |
| Holland Dozer Sevice                                         | Yes                                    | No       | No  | Yes        | 25           |  |  |  |
| Holland Equipment                                            | Yes                                    | No       | No  | Yes        | 40           |  |  |  |
| IBF                                                          | Yes                                    | Yes      | Yes | Yes        | 1            |  |  |  |
| James Bond Custom Land Clearing                              | No                                     | No       | Yes | Yes        | 1            |  |  |  |
| Jimmy Glasscock Construction                                 | Yes                                    | Yes      | Yes | No         | 30           |  |  |  |
| Kellco Construction                                          | No                                     | No       | No  | No         | 100          |  |  |  |
| Mayo Dozer Service                                           | No                                     | Yes      | Yes | Yes        | 1            |  |  |  |
| Moore Dozing                                                 | Yes                                    | No       | No  | Yes        | 1            |  |  |  |
| Nelms Equipment & Reforestation                              | Yes                                    | Yes      | Yes | Yes        | 1            |  |  |  |
| Pope Dozer Inc.                                              | Yes                                    | No       | No  | Yes        | 100          |  |  |  |
| Providence Land Services                                     | No                                     | No       | No  | Yes        | 1            |  |  |  |
| Quality Custom Dozer Service                                 | Yes                                    | Yes      | Yes | Yes        | '            |  |  |  |
| Robert Lange, Inc.                                           | No                                     | No       | No  | No         | 1            |  |  |  |
| Rockin M Agri Services                                       | No                                     | No       | No  | Yes        | 20           |  |  |  |
| Silva-Tech/South, Ltd.                                       | No                                     | No       | No  | No         | 1            |  |  |  |
|                                                              | Yes                                    | No       | No  | Yes        | 75           |  |  |  |
| Smith & Smith Forest Management, Inc. Southwest Silviculture | No                                     | No       | Yes | Yes        | 75<br>1      |  |  |  |
| Strahan Dozer Service                                        | No                                     | No       | No  | No         | 1            |  |  |  |
|                                                              | Yes                                    | No<br>No | No  | No         | 1            |  |  |  |
| Tebbetts Dozer Service                                       | res<br>No                              | No<br>No | Yes | Yes        | 1            |  |  |  |
| Texas Land Clearing Company                                  |                                        |          |     |            |              |  |  |  |
| Texas Land Clearing, Inc.                                    | No                                     | No       | No  | No         | 20           |  |  |  |
| Thomas Dozer & Construction                                  | No                                     | No       | No  | No         | 1            |  |  |  |
| Timber Heights Forestry                                      | Yes                                    | No       | No  | No         | 1            |  |  |  |
| Timberland Silvicultural Services                            | No                                     | No       | No  | Yes        | 10           |  |  |  |
| Tommy Kessler                                                | Yes                                    | No       | No  | Yes        | 1            |  |  |  |
| Van Duson Timber Corp.                                       | No                                     | No       | No  | No         | 1            |  |  |  |

# Great Trinity Forest Management Plan Sources and Contacts Forest Services Vendor Database: Prescribed Fire Vendors

### Prescribed Fire Vendors

| Company                               | Contact             | Address            | City       | State | Zip        | WorkPhone      | HomePhone      | Fax            |
|---------------------------------------|---------------------|--------------------|------------|-------|------------|----------------|----------------|----------------|
| Acorn Outdoor Services                | Justin Penick       | P. O. Box 151537   | Lufkin     | TX    | 75915-1537 | (936) 875-5400 |                | (936) 875-5401 |
| Beaver Dozer Service                  | Allen Reed          | 11828 FM 138       | Center     | TX    | 75935-5718 | (936) 591-2247 | (936) 254-3146 | (936) 254-3460 |
| Bird Forestry Services, Inc.          | Mark W. Brian       | 2557 SH 7 East     | Center     | TX    | 75935      | (800) 259-3053 |                |                |
| Environmental Tree Shredding, L.P.    | Kris Knackstedt     | P. O. Box 1042     | Kilgore    | TX    | 75663      | (903) 262-0909 |                | (903) 984-0850 |
| Hagler Forestry                       |                     | 830 CR 1092        | Center     | TX    | 75935      | (936) 598-4805 | (936) 598-4805 | (936) 590-4843 |
| IBF                                   | Matthew L. Buchanan | P. O. Box 165      | Carthage   | TX    | 75633      | (903) 693-4929 |                | (903) 693-3161 |
| Keith Axelson                         | Keith Axelson       | Route 4 Box 265    | Crockett   | Texas | 75835      |                | (936) 544-3034 |                |
| Kellco Construction                   | Charles Kelley      | P. O. Box 1606     | Cleveland  | TX    | 77327      |                | (281) 592-7647 |                |
| Nelms Equipment & Reforestation       | Jason Nelms         | P. O. Box 5        | Pennington | TX    | 75856      | (936) 638-2072 |                | (936) 638-2093 |
| Raven Environmental Services Inc.     |                     | P. O. Box 6482     | Huntsville | Texas | 77342      | (936) 291-0946 | (936) 436-1654 | (936) 291-0960 |
| Smith & Smith Forest Management, Inc. | David C. Smith      | 211 N. Main Street | Gladewater | TX    | 75647      | (903) 844-9240 |                | (903) 844-9278 |
| Southwest Silviculture                | Mike Wagstaff       | P. O. Box 719      | Warren     | TX    | 77664      | (409) 381-1423 | (409) 547-0027 | (936) 967-4230 |
| Zavala Forestry Services              | Juan A. Zavala      | P. O. Box 3222     | Longview   | TX    | 75606      | (903) 399-8618 |                |                |

### Prescribed Fire Vendors continued

| Company                               | MobilePhone    | Email                            | SitePrepBurn | UnderstoryBurn | Winter | Spring | Summer | Fall |
|---------------------------------------|----------------|----------------------------------|--------------|----------------|--------|--------|--------|------|
| Acorn Outdoor Services                | (936) 438-2499 | aosinc@consolidated.net          | Yes          | Yes            | Yes    | Yes    | Yes    | Yes  |
| Beaver Dozer Service                  |                |                                  | Yes          | Yes            | Yes    | Yes    | Yes    | Yes  |
| Bird Forestry Services, Inc.          | (936) 560-2931 | www.bfsinc.com                   | No           | Yes            | Yes    | Yes    | Yes    | Yes  |
| Environmental Tree Shredding, L.P.    |                | texastreeshredding@earthlink.net | Yes          | No             | Yes    | Yes    | Yes    | Yes  |
| Hagler Forestry                       |                | tara1@qzip.net                   | Yes          | No             | No     | Yes    | Yes    | Yes  |
| IBF                                   | (903) 692-2406 | IBFTree@gmail.com                | Yes          | Yes            | Yes    | Yes    | Yes    | Yes  |
| Keith Axelson                         |                |                                  | Yes          | Yes            | Yes    | Yes    | Yes    | Yes  |
| Kellco Construction                   |                |                                  | Yes          | Yes            | Yes    | Yes    | Yes    | Yes  |
| Nelms Equipment & Reforestation       | (936) 546-8061 | Nelms1@yahoo.com                 | Yes          | Yes            | Yes    | Yes    | Yes    | Yes  |
| Raven Environmental Services Inc.     |                |                                  | Yes          | Yes            | Yes    | Yes    | Yes    | Yes  |
| Smith & Smith Forest Management, Inc. |                |                                  | Yes          | Yes            | Yes    | Yes    | Yes    | Yes  |
| Southwest Silviculture                |                | macstaff@pernet.net              | Yes          | Yes            | Yes    | Yes    | Yes    | Yes  |
| Zavala Forestry Services              | (903) 295-9446 |                                  | Yes          | Yes            | No     | No     | No     | No   |

### Prescribed Fire Vendors continued

| Company                               | FireFighterRedCarded | BrushTruck | Dozer | FirePlow | MinimumAcres |
|---------------------------------------|----------------------|------------|-------|----------|--------------|
| Acorn Outdoor Services                | Yes                  | Yes        | Yes   | Yes      | 1            |
| Beaver Dozer Service                  | No                   | No         | Yes   | Yes      | 25           |
| Bird Forestry Services, Inc.          | No                   | No         | Yes   | Yes      | 1            |
| Environmental Tree Shredding, L.P.    | No                   | No         | Yes   | No       | 1            |
| Hagler Forestry                       | No                   | No         | Yes   | No       | 35           |
| IBF                                   | No                   | No         | Yes   | Yes      | 1            |
| Keith Axelson                         | No                   | No         | Yes   | Yes      | 35           |
| Kellco Construction                   | No                   | No         | Yes   | No       | 100          |
| Nelms Equipment & Reforestation       | No                   | No         | No    | No       | 1            |
| Raven Environmental Services Inc.     | Yes                  | No         | Yes   | Yes      | 50           |
| Smith & Smith Forest Management, Inc. | No                   | No         | Yes   | No       | 50           |
| Southwest Silviculture                | Yes                  | No         | Yes   | Yes      | 1            |
| Zavala Forestry Services              | No                   | No         | Yes   | No       | 1            |

# Great Trinity Forest Management Plan

# **Sources and Contacts**

Forest Services Vendor Database:
Tree Planting Vendors

### Tree Planting Vendors

| Company                                   | Contact                | Address               | City           | State | Zip   | WorkPhone      | Fax            |
|-------------------------------------------|------------------------|-----------------------|----------------|-------|-------|----------------|----------------|
| Abel Sanchez Forestry Service             | Abel Sanchez           | P. O. Box 1571        | Jasper         | TX    | 75951 | (409) 384-7834 |                |
| All Regions Forestry, Inc.                | Lorenzo or Diana Tunek | P. O. Box 8435        | Bossier City   | LA    | 71113 | (318) 549-1767 | (318) 746-1556 |
| D & W Regeneration, Inc.                  |                        | P. O. Box 1231        | Center         | TX    | 75935 | (936) 591-2535 |                |
| Doug Meadows                              | Doug Meadows           | 4827 FM 561           | Simms          | TX    | 75574 | (903) 543-2943 |                |
| Doug Wilder                               | Doug Wilder            | Route 1 Box 198       | Corrigan       | TX    | 75939 | (936) 398-2224 |                |
| Eller & Sons Trees, Inc.                  | Jerry Eller            | 500 Loblolly Lane     | Franklin       | GA    | 30217 | (706) 675-6471 |                |
| Gary Hess Contracting, Inc.               | Gary Hess              | P. O. Box 65          | Garvin         | OK    | 74736 | (580) 286-2961 |                |
| George Whatley, Jr.                       | George Whatley, Jr.    | 558 County Road 4231  | Atlanta        | TX    | 75551 | (903) 796-5564 | (903) 796-5564 |
| Glasscock Enterprises                     | James Glasscock        | 22904 Hwy 69 N        | Mineola        | TX    | 75773 | (903) 882-3532 |                |
| IBF                                       | Matthew L. Buchanan    | P. O. Box 165         | Carthage       | TX    | 75633 | (903) 693-4929 | (903) 693-3161 |
| John Lee Lewis                            | John Lee Lewis         | 610 FM 1725           | Willis         | TX    | 77378 | (936) 767-4537 |                |
| Kimbo Farms, Inc.                         | Kimberly Thurman       | P. O. Box 30          | Joaquin        | TX    | 75954 |                |                |
| Magro Arriaga                             | Magro Arriaga          | 498 Dorgan Dr.        | Jasper         | TX    | 75951 |                |                |
| Manuel Mijares                            | Manuel Mijares         | 406 E. Morris Street  | Jasper         | TX    | 75951 |                |                |
| Mark Langford                             | Mark Langford          | 338 County Road 421   | Carthage       | TX    | 75633 | (903) 235-5836 |                |
| Parker Forestry Consultants               | Keelin Parker          | Route 2 Box 3225      | Woodville      | TX    | 75979 | (409) 283-5413 | (409) 837-2524 |
| Pineywoods Reforestation                  |                        | P. O. Box 508         | Marshall       | AR    | 72675 | (870) 448-6150 | (903) 721-2591 |
| R V Forestry Co.                          | Ruben J. Valencia      | P. O. Box 1754        | Silsbee        | TX    | 77656 |                |                |
| RAAD Agricultural, Inc.                   | Michael S. Gay         | 1012 County Road 2552 | Shelbyville    | TX    | 75973 |                |                |
| Silva-Tech/South, Ltd.                    | Buddy Stalnaker        | P. O. Box 633262      | Nacogdoches    | TX    | 75963 | (936) 568-9031 | (936) 568-9031 |
| Spivey Tree Planting Service              | Fred Spivey            | P. O. Box 349         | Mt. Enterprise | TX    | 75681 | (903) 822-3267 |                |
| Star Forestry Co.                         | Luis Garcia            | P. O. Box 473         | Timpson        | TX    | 75975 | (936) 254-3652 |                |
| Superior Forestry Service (Tree Planting) | Jerry Arter            | P. O. Box 25          | Tilly          | AR    | 72679 | (870) 496-2442 |                |
| Tommy Kessler                             | Tommy Kessler          | Box 816               | Linden         | TX    | 75563 | (903) 756-7001 |                |
| Tree Tech Forest Farm, Inc.               | David Riley            | Box 278 CR 4720       | Silsbee        | TX    | 77656 | (409) 429-5180 |                |
| Van Duson Timber Corp.                    | Gary Van Dusen         | 4015 Valley Ranch Rd. | Longview       | TX    | 75602 | (903) 236-7696 |                |

### Tree Planting Vendors continued

| Company                                   | MobilePhone    | Email                          | MachineOpenLand I | MachineWildLand | Dibble | Hoedad | Shovel | MinimumAcres |
|-------------------------------------------|----------------|--------------------------------|-------------------|-----------------|--------|--------|--------|--------------|
| Abel Sanchez Forestry Service             |                |                                | Yes               | Yes             | Yes    | No     | No     | 1            |
| All Regions Forestry, Inc.                |                | allregionsinc@aol.com          | No                | No              | Yes    | Yes    | No     | 1            |
| D & W Regeneration, Inc.                  |                | kurtdenney@yahoo.com           | No                | No              | Yes    | No     | No     | 1            |
| Doug Meadows                              | (903) 826-4262 |                                | Yes               | No              | No     | No     | No     | 1            |
| Doug Wilder                               |                | dwilder2001@yahoo.com          | Yes               | Yes             | Yes    | No     | No     | 1            |
| Eller & Sons Trees, Inc.                  |                | info@ellerandsons.com          | No                | No              | Yes    | Yes    | No     | 1            |
| Gary Hess Contracting, Inc.               |                | garyhess@arbuckleonline.com    | No                | No              | No     | No     | Yes    | 1            |
| George Whatley, Jr.                       |                |                                | Yes               | No              | No     | No     | No     | 1            |
| Glasscock Enterprises                     |                | jackieglasscock@yahoo.com      | Yes               | Yes             | No     | No     | No     | 1            |
| IBF                                       | (903) 692-2406 | IBFTree@gmail.com              | Yes               | Yes             | Yes    | No     | Yes    | 1            |
| John Lee Lewis                            |                |                                | Yes               | No              | No     | No     | No     | 1            |
| Kimbo Farms, Inc.                         |                |                                | No                | No              | Yes    | No     | No     | 1            |
| Magro Arriaga                             |                |                                | Yes               | Yes             | Yes    | No     | No     | 1            |
| Manuel Mijares                            |                |                                | No                | No              | Yes    | No     | No     | 1            |
| Mark Langford                             |                |                                | Yes               | No              | No     | No     | No     | 1            |
| Parker Forestry Consultants               |                | pfc@parkerforestry.com         | Yes               | Yes             | Yes    | No     | No     | 1            |
| Pineywoods Reforestation                  | (903) 721-2592 |                                | No                | No              | No     | Yes    | No     | 1            |
| R V Forestry Co.                          | (409) 782-0162 |                                | Yes               | No              | Yes    | No     | No     | 1            |
| RAAD Agricultural, Inc.                   | (936) 591-1960 |                                | Yes               | Yes             | Yes    | No     | No     | 1            |
| Silva-Tech/South, Ltd.                    | (936) 552-4807 | buddy@silvatechsouth.com       | Yes               | No              | No     | No     | No     | 1            |
| Spivey Tree Planting Service              |                | spiveystakecompany@hotmail.com | Yes               | Yes             | Yes    | No     | No     | 1            |
| Star Forestry Co.                         | (936) 556-2087 | starforestry@yahoo.com         | No                | No              | Yes    | No     | No     | 1            |
| Superior Forestry Service (Tree Planting) |                | sfs@superiorforestry.com       | No                | No              | Yes    | Yes    | No     | 1            |
| Tommy Kessler                             |                |                                | Yes               | Yes             | No     | No     | No     | 1            |
| Tree Tech Forest Farm, Inc.               | (936) 329-0890 |                                | No                | No              | Yes    | No     | No     | 1            |
| Van Duson Timber Corp.                    |                | jv1053@aol.com                 | Yes               | Yes             | No     | No     | No     | 1            |

# TEXAS FOREST SERVICE

# **Best Management Practices**

## **Product and Vendor Guide**

March, 1999

This guide consolidates information needed to obtain materials for road and stream crossing construction. The price information in this guide is approximated and may vary with distance from distributors.

More detailed information of each product is available from the BMP Project. If you need specific information about a product, call Burl Carraway or Hughes Simpson at (936) 639-8180 or e-mail us at hsimpson@tfs.tamu.edu.

If you know of additional sources from which materials may be obtained, please let us know.

The Texas Forest Service does not endorse the use of specific products or vendors listed in the contents of this guide.

\*All prices are subject to change.

# TABLE OF CONTENTS

| GEOTEXTILE FABRICS                                                                           | 3  |
|----------------------------------------------------------------------------------------------|----|
| GEOGRIDS.                                                                                    | 4  |
| GEOCELLS (GEOWEB)                                                                            | 5  |
| RENO MATTRESS                                                                                | 6  |
| CULVERTS                                                                                     | 7  |
| <ul><li>Specs and Prices</li><li>Sizing Chart</li></ul>                                      |    |
| TEMPORARY CROSSING MATS                                                                      | 10 |
| <ul><li>Drag-Line Mats</li><li>Laminated Board Road</li><li>Panel-Lam Skidder Mats</li></ul> |    |
| RAILCARS                                                                                     | 12 |
| <ul><li>Tank Cars</li><li>Flat Cars</li><li>Box Cars</li></ul>                               |    |
| GABION BASKETS                                                                               | 14 |
| MISCELLANEOUS PRODUCTS                                                                       | 15 |
| <ul><li>Silt Fencing</li><li>Erosion Control Fabrics</li><li>Hydromulches</li></ul>          |    |
| FILL MATERIALS                                                                               | 17 |
| <ul><li>Southeast Texas</li><li>Northeast Texas</li></ul>                                    |    |

# **GEOTEXTILE FABRICS**

**Application:** Geotextiles, often called construction fabric, are the most widely used geosynthetic. They are constructed from long lasting synthetic fibers that are bonded together to form a fabric held together by weaving, heat bonding, or other means. They are primarily used for separation or reinforcement over wet, unstable soils. Geotextile fabrics are typically used in conjunction with geoweb or geogrid.

Note: Geotextiles are photodegradable; they must be stored out of the sunlight.

## **Manufacturers:**

| Company              | <u>Phone</u>   | <u>Product</u>                                 |
|----------------------|----------------|------------------------------------------------|
| Contech              | (409) 296-4098 | C-200 Woven Fabric or C-38<br>Non-woven fabric |
| Nicolon/Mirafi Group | (800) 234-0484 | 140N                                           |
| Linq Industries      | (800) 543-9966 | 130EX                                          |

**Price Range:** \$00.32 to \$1.50 per square yard for nonwoven geotextiles.

\$00.50 to \$2.00 per square yard for woven geotextiles.

**Quantities:** Sold by the roll. One roll will cover 475 to 600 square yards (150ft. of road) and

will weigh 120 to 150 pounds.

#### **Distributors:**

CONTECH Construction Products, Inc. Greg Nester, Sales Representative 14505 Torrey Chase Blvd., Suite 108 Houston, TX 77014

Phone: (281) 893-6012 Fax: (281) 893-6026

Seabreeze Culvert, Inc. Mason Breaux, Sales Representative P.O. Box 6

Stowell, TX 77661

Phone: (409) 296-4098 or (409) 267-5274

Fax: (409) 296-4099

# **GEOGRIDS**

**Application:** Geogrids are made from polyethylene sheeting that is formed into open grid-like configurations. Geogrids are good for reinforcement because they have high tensile strengths, and coarse aggregate can interlock into the grid structure.

#### **Manufacturers:**

| Company              | <u>Phone</u>   | <u>Product</u>   |
|----------------------|----------------|------------------|
| Nicolon/Mirafi Group | (800) 234-0484 | Miragrid 5T      |
| Tensar               | (800) 836-7271 | BX 1100          |
| Tenax                | (800) 356-8495 | MS330            |
| Huesker              | (800) 942-9418 | Fortrac 35/20-20 |

**Price Range:** \$1.60 to \$5.00 per square yard (the higher cost products are made from coated

polyester).

**Quantities:** Typically sold by the roll (13.1' X 164'). May be ordered in specific dimensions.

One standard roll weighs 75 to 100 pounds.

#### **Distributors:**

CONTECH Construction Products, Inc.

Greg Nester, Sales Representative
14505 Torrey Chase Blvd., Suite 108
Houston, TX 77014

Construction Materials
18909 Highland Road
Baton Rouge, LA 70821
Phone: (504) 751-4000

Phone: (281) 893-6012

Fax: (281) 893-6026 Tensar David Poe

Seabreeze Culvert, Inc. 825 Fort View Road, Ste. 112F

 Mason Breaux, Sales Representative
 Austin, TX 78704

 P.O. Box 6
 Phone: (512) 440-0898

 Stowell, TX 77661
 Fax: (512) 440-0899

Phone: (409) 296-4098 or (409) 267-5274

Fax: (409) 296-4099

## **GEOCELLS**

**Application:** Geocells are made from polyethylene strips from 2 to 8 inches high that are bonded to form a honeycomb structure. The product is shipped in a collapsed and compact form. Geocells may be used as a low-water crossing or as a wet-area crossing. It works best in areas with flat approaches to the crossing and with a fairly firm base. Used in perennial and intermittent streams, water may flow over the geocells, which prevents lateral movement of the fill material and provides for a stable base for traffic. It is recommended that a geotextile fabric be installed under the geocells. Type of fill materials will be influenced by expected stream velocities.

#### **Manufacturers:**

| Company | <u>Phone</u>   | <u>Product</u> |
|---------|----------------|----------------|
| Presto  | (920) 738-1211 | Geoweb         |
| AGH     | (713) 552-1749 | Envirogrid     |
| WEBTEC  | (800) 438-0027 | TerraCell      |

**Price Range:** \$150 - \$400 per unit.

**Quantities:** Typically sold by the sheet (8' X 20'). Four inch sheets are adequate for light

traffic (pick-up trucks and small tractors), while eight inch sheets are recommended for heavy traffic (large tractors and logging traffic.)

#### **Distributors:**

CONTECH Construction Products, Inc.
Greg Nester, Sales Representative

14505 Torrey Chase Blvd., Suite 108 Houston, TX 77014

Phone: (281) 893-6012 Fax: (281) 893-6026

Seabreeze Culvert, Inc.

Mason Breaux, Sales Representative

P.O. Box 6

Stowell, TX 77661

Phone: (409) 296-4098 or (409) 267-5274

Fax: (409) 296-4099

Big "R" Manufacturing & Distributing, Inc.
Dave Wilke, Sales Rep.

P.O. Box 1290

Greeley, CO 80632-1290 Phone: (970) 356-9600 or

(800) 234-0734

Fax: (970) 356-9621

## **RENO MATTRESS**

**Application:** A reno mattress is comparable to a box spring mattress from a bed. It differs in that it is made from a product similar to chain-link fencing. The mattress is place in the stream when it is filled up with fist-size rock and the top is wired shut. This product serves to hold rock in place for a low water crossing. It differs from Geoweb in that it does not necessarily need to be installed flush with the bottom of the stream channel. The open characteristics of the wire will allow for water to flow through the mattress as well as over the top. This product comes as galvanized wire or can be coated with PVC to extend the life of the product.

#### **Manufactures:**

| Compan   | У                       | <u>Phone</u>       | <u>Product</u>      |
|----------|-------------------------|--------------------|---------------------|
| MacCafe  | erri Gabions            | (972) 346-2974     | Reno mattress       |
| *Price r | range:                  | Galvanized         | PVC                 |
|          | 12'X6'X6"<br>12'X6'X12" | \$68.00<br>\$78.20 | \$98.75<br>\$117.85 |

#### **Distributors:**

MacCaferri Gabions 1120S. Texas St., Suite F Lewisville, Texas 75057-4833

Phone: (972) 346-2974 FAX: (972) 219-1639

The Texas Forest Service does not endorse the use of specific products or vendors listed.

# **CULVERTS**

**Application:** Almost everybody knows when culverts are appropriate to install. What also needs to be understood is the tremendous variation in culvert sizes and types. Three "main types that seem to emerge by their use in forestry operations are galvanized steel, aluminum, and polymer-coated galvanized steel. Aluminized, asphalt coated, plastic, and fiberglass are less common types but may also be appropriate.

## **Specifications:**

| Types                     | <u>Description</u>                        | <u>Life Span</u>     |
|---------------------------|-------------------------------------------|----------------------|
| Galvanized Steel          | Most common                               | 15 years (pH <7, >7) |
| Aluminum                  | Very light but easily crushed             | 50 years             |
| Polymer-coated Galvanized | Relatively heavy, and must handle w/care  | 30-50 years          |
| Asphalt-coated            | Being phased out (environmental concerns) | N/A                  |
| Plastic                   | Relatively light, and gaining popularity  | 30 years             |
| Aluminized                | Relatively light                          | 30 years             |
| Fiberglass                | Very heavy, but inexpensive               | 50 years             |

<sup>\*</sup>Note that Life Spans are not definite – they vary with soil type, water acidity, and manufacturer's claims.

## Size/Price\*:

| Types                     | <u>24 inch</u> | <u>36 inch</u> | <u>48 inch</u> | <u>60 inch</u> |
|---------------------------|----------------|----------------|----------------|----------------|
| Galvanized Steel          | \$12.42        | \$18.55        | \$24.65        | \$38.06        |
| Aluminum                  | \$17.93        | \$30.30        | \$39.81        | \$62.28        |
| Polymer-coated Galvanized | \$14.67        | \$21.15        | \$30.15        | \$47.62        |
| Aluminized                | \$13.55        | \$20.00        | \$26.40        | \$40.20        |
| Fiberglass                | \$10.00        | \$12.50        | \$15.00        | \$20.00        |

<sup>\*</sup>Prices are for standard 16 gauge per linear foot. Heavier gauges obviously cost more.

**Arched Culverts:** Culverts vary by shape as well. Arched culverts are "short" and egg-shaped, and work well where sufficient head or fill height is of concern. They may also require use of a heavier gauge to facilitate the arching process, thereby increasing the cost. The cost of arched culverts may generally be calculated by adding 7% to the initial culvert cost.

Culvert Sizing: It cannot be emphasized enough the importance of properly sizing culverts! Cheaper is not always better, and a 6" rain will sure prove it. Refer to the chart below when sizing culverts.

| ACRES   |      | Light Soil<br>(Sands) | S     | N      | Iedium So | oils     |      | Heavy So<br>(Clays) | ils   |
|---------|------|-----------------------|-------|--------|-----------|----------|------|---------------------|-------|
| DRAINED | Flat | Mod.                  | Steep | Flat   | Mod.      | Steep    | Flat | Mod.                | Steep |
|         |      |                       | Cul   | vert D | iamete    | er in In | ches |                     |       |
| 5       | 18   | 18                    | 18    | 18     | 18        | 21       | 21   | 21                  | 24    |
| 10      | 18   | 18                    | 18    | 21     | 24        | 27       | 27   | 27                  | 36    |
| 20      | 18   | 18                    | 18    | 24     | 27        | 36       | 36   | 36                  | 42    |
| 30      | 18   | 18                    | 18    | 27     | 30        | 36       | 36   | 42                  | 48    |
| 40      | 18   | 18                    | 18    | 27     | 36        | 42       | 42   | 48                  |       |
| 50      | 18   | 18                    | 18    | 30     | 36        | 48       | 48   | 48                  |       |
| 75      | 18   | 21                    | 21    | 36     | 42        |          |      |                     |       |
| 100     | 21   | 21                    | 24    | 36     | 48        |          |      |                     |       |
| 150     | 21   | 24                    | 24    | 42     |           |          |      |                     |       |
| 200     | 24   | 30                    | 30    | 48     |           |          |      |                     |       |
| 250     | 27   | 30                    | 30    |        |           |          |      |                     |       |
| 300     | 30   | 36                    | 36    |        |           |          |      |                     |       |
| 350     | 30   | 36                    | 42    |        |           |          |      |                     |       |
| 400     | 36   | 36                    | 42    |        |           |          |      |                     |       |

Flat: 0% - 5% Slope

Moderate (Mod.): 5% - 10% Steep: 15%+

#### **Distributors:**

CONTECH Construction Products, Inc. Greg Nester, Sales Representative 14505 Torrey Chase Blvd., Suite 108

Houston, TX 77014 Phone: (281) 893-6012 Fax: (281) 893-6026

Seabreeze Culvert, Inc.
Mason Breaux, Sales Representative
P.O. Box 6
Stowell, TX 77661

Phone: (409) 296-4098 or (409) 267-5274

Fax: (409) 296-4099

Texas Steel Culvert Company Susan Cole, Sales Representative 2020 W. Division Arlington, TX 76012

Phone: (817) 265-2255 Fax: (817) 265-2250

Galvanized and Polymer-coated only

# **STEEL PIPE**

**Product: Steel Pipe** 

18" X 40' \$10.95/ft. 22" X 40' \$12.95/ft. 24" X 40'(Truckload of 15 joints) \$550/joint

48" \$2,250/30 ft. joint; 3 joints/\$4,150

#### **Distributor:**

Price Co. (Steel Pipe) Rt. 2, Box 42K Kumby, TX 75433

Phone: (800) 443-1145

## TEMPORARY CROSSING MATS FOR HARVESTING OPERATIONS

**Application:** Temporary crossing mats are used to cross small streams and/or wet areas. They are easily moved from one location to another by a large tractor or skidder. They are relatively inexpensive and they prevent the need for fill material associated with culverted crossings.

**Product: Drag-Line Mats (Heavy Duty)** 

**Specifications:** Mats are constructed of untreated, mixed American hardwoods.

#### **Size/Price/Weight:**

#### Eight Inch (4 X 8):

| Sixteen Feet     | \$295 each | \$885/set of 3   | 2,800 lbs. per mat |
|------------------|------------|------------------|--------------------|
| Eighteen Feet    | \$330 each | \$990/set of 3   | 3,200 lbs. per mat |
| Twenty Feet      | \$385 each | \$1,155/set of 3 | 3,500 lbs. per mat |
| Twenty-four Feet | \$480 each | \$1,440/set of 3 | 4,200 lbs. per mat |

#### Twelve Inch (4 x 8):

| Twenty Feet       | \$575 each  | \$1,725/set of 3 | 5,280 lbs. per mat |
|-------------------|-------------|------------------|--------------------|
| Twenty-four Feet  | \$700 each  | \$2,100/set of 3 | 6,300 lbs. per mat |
| Twenty-eight Feet | \$875 each  | \$2,625/set of 3 | 7,400 lbs. per mat |
| Thirty Feet       | \$970 each  | \$2,910/set of 3 | 7,900 lbs. per mat |
| Thirty-two Feet   | \$1175 each | \$3,525/set of 3 | 8,400 lbs. per mat |

#### **Manufacturer/Distributor:**

Quality Mat Company John Penland, Sales Representative 6550 Tram Road Beaumont, TX 77713

Phone: (409) 722-4594 or (800) 227-8159

## **Product: Laminated Drag-Line Mats**

"Board Road"

**Specifications:** Mats are constructed of untreated, mixed American hardwood. Mats are

designed for light traffic, or heavy traffic in wet-areas with no span. Life

span is about five years.

## Size/Price/Weight:

| 12' X 8' X 6" (oak)         | \$295 per mat | 2600 pounds |
|-----------------------------|---------------|-------------|
| 16' X 8' X 6" (oak)         | \$415 per mat | 3400 pounds |
| 16' X 8' X 6" (mixed hdwd.) | \$395 per mat | 3250 pounds |

#### Manufacturer/Distributor:

Quality Mat Company John Penland, Sales Representative 6550 Tram Road Beaumont, TX 77713

Phone: (409) 722-4594 or (800) 227-8159

**Product: "Panel-Lam" Skidder Mats** 

**Specifications:** Constructed from 4" X 8" creosote treated timbers. Life span is

approximately 5 years.

**Size/Price/Weight:** 

5' X 24' X 8" \$2350 - \$2500 per mat 4600 pounds

**Manufacturer:** Distributor:

Wheeler Lumber Operations

Big "R" Manufacturing & Distributing, Inc.

3340 Republic Avenue David Wilke, Sales Representative

P.O. Box 26100 P.O. Box 1290

St. Louis Park, MN 55426 Greeley, CO 80632-1290

Phone: (800) 328-3986 Phone: (970) 356-9600 or (800) 234-0734

Fax: (970) 356-9621

#### **RAILCARS**

**Product: Tank Cars** 

**Specifications:** Tank cars with the ends cut out. Wall thickness from 1/2 inch to 7/8 inch.

Life span is 30-50 years. Appropriate in larger creeks where conventional

sized culverts are too small.

#### Price/Size\*:

| <u>Diameter</u> | <u>Length</u> | <u>Cost</u>                 |
|-----------------|---------------|-----------------------------|
| 6'6" – 7'11"    | 32' – 40'     | \$85/foot (\$3,750/car)     |
| 8'0" - 8'11"    | 32' – 50'     | \$90/foot (\$3,750/120 ft.) |
| 9'0" – 9'4"     | 32' – 50'     | \$95/foot                   |
| 9'5" – 10'      | 40' - 60'     | \$105/foot                  |

<sup>\*</sup>Price is per linear foot.

#### **Distributors:**

Diversified Railcar Price Company
Terry Smith, Owner Rt. 2, Box 42K
143 Ouachita 504 Kumby, TX 75433
Camden, AR 71701 Phone: (800) 443-1145

Phone: (870) 231-9782 or (870) 664-2196

**Product: Flat Cars** 

**Specifications:** Appropriate for spanning larger streams. Very inexpensive relative to

constructing a bridge.

**Size/Price\*/Weight:** 10' X 40' \$3,500 20,000 pounds

 10' X 50'
 \$4,000
 25,000 pounds

 10' X 60'
 \$4,800
 38,000 pounds

 8' X 89'
 \$9,500
 44,000 pounds

#### **Distributors:**

Diversified Railcar Terry Smith, Owner 143 Ouachita 504 Camden, AR 71701

Phone: (870) 231-9782 or (870) 664-2196

**Product: Box Car Beds** 

**Specifications:** Appropriate for spanning larger streams. Very inexpensive relative to

constructing a bridge. Box car beds are box cars with the top cut off.

They are lighter than the flat cars.

Size/Price\*/Weight:

10' X 50' \$4,000 27,000 pounds

\*Price includes delivery to most of East Texas.

#### **Distributor:**

Diversified Railcar Terry Smith, Owner 143 Ouachita 504 Camden, AR 71701

Phone: (870) 231-9782 or (870) 664-2196

#### **GABION BASKETS**

**Application:** Gabion baskets look like chain link fencing material. They are made from both zinc-coated wire and zinc-coated with a PVC sleeve. The baskets are primarily used as retaining structures, and may be appropriate for use in stream crossings. Baskets are typically filled with 6" or larger stones (no fines). One drawback is that rock must be placed by hand.

| GABION BASKETS SIZES AND PRICES |        |        |           |                         |         |            |  |  |
|---------------------------------|--------|--------|-----------|-------------------------|---------|------------|--|--|
| Length                          | Width  | Height | Number of | Capacity                | Price   | Price      |  |  |
| (feet)                          | (feet) | (feet) | Cells     | (cubic yards) Galvanize |         | PVC-Coated |  |  |
| 6                               | 3      | 3      | 2         | 2.0 \$47.15             |         | \$62.67    |  |  |
| 9                               | 3      | 3      | 3         | 3.0                     | \$67.27 | \$89.92    |  |  |
| 12                              | 3      | 3      | 4         | 4.0                     | \$85.50 | \$114.87   |  |  |
| 6                               | 3      | 1.5    | 2         | 1.0                     | \$33.27 | \$43.70    |  |  |
| 9                               | 3      | 1.5    | 3         | 1.5 \$47.47             |         | \$62.67    |  |  |
| 12                              | 3      | 1.5    | 4         | 2.0                     | \$70.17 | \$80.82    |  |  |
| 6                               | 3      | 1      | 2         | 0.66                    | \$29.82 | \$38.95    |  |  |
| 9                               | 3      | 1      | 3         | 1.0                     | \$41.25 | \$54.67    |  |  |
| 12                              | 3      | 1      | 4         | 1.33                    | \$52.15 | \$71.02    |  |  |
| 4.5                             | 3      | 3      | 1         | 1.5                     | \$40.70 | \$48.70    |  |  |

<sup>\*</sup>Some units may be purchased at costs up to \$275.

#### **Manufacturers:**

Lane Metal Products Division

State Rt. 1030

Dublin, VA 24084

Phone: (540) 674-4645

MacCaferri Gabions, Inc. 1120 S. Texas St., Ste. F Lewisville, TX 75057-4833 Phone: (972) 436-2974

FAX: (972) 219-1639 email: magaec@aol.com

#### **Distributors:**

Big "R" Manufacturing & Distributing, Inc.

Dave Wilke, Sales Representative

P.O. Box 1290

Greeley, Co 80632-1290

Phone: (970) 356-9600 or (800) 234-0734

Fax: (970) 356-9621

CONTECH Construction Products, Inc. Greg Nester, Sales Representative 14505 Torrey Chase Blvd., Suite 108 Houston, TX 77014

Phone: (281) 893-6012 Fax: (281) 893-6026

#### MISCELLANEOUS PRODUCTS

**Product: Silt Fencing** 

**Application:** Appropriate for use as an erosion barrier.

**Price/Size:** Standard roll (3' X 100') costs \$30.00 and weighs 55.0 lbs.

Silt fencing backed with wire for \$90.00 for a roll (3' X 100')

Both rolls come with pre-attached posts for installation.

#### **Distributors:**

CONTECH Construction Products, Inc. Seabreeze Culvert, Inc.

Greg Nester, Sales Representative Mason Breaux, Sales Representative

14505 Torrey Chase Blvd., Suite 108 P.O. Box 6

Houston, TX 77014 Stowell, TX 77661

Phone: (281) 893-6012 Phone: (409) 296-4098 or (409) 296-5274

Fax: (281) 893-6026 Fax: (409) 296-4099

#### **Product: Erosion Control Fabrics**

**Application:** Appropriate for use on exposed soils to prevent erosion. The products are so widely varied in specifications and prices that it is impractical to list specific products. However, below is a list of distributors that carry many different types of fabrics. Fabrics range from polymer synthetics to natural materials.

#### **Distributors:**

Synthetic Industries

Geosynthetic Products Division

4019 Industry Drive

North American Green
14649 Highway 41 North
Evansville, IN 47711

Chattanooga, TN 37416 Phone: (800) 772-2040 or (812) 867-6632

Phone: (800) 621-0444 or (423) 899-0444 Fax: (812) 867-0247

Fax: (423) 899-7619

BonTerra America American Excelsior Company 355 W. Chestnut Street <a href="http://www.amerexcel.com">http://www.amerexcel.com</a>

Genesee, Idaho 83832 Phone: (800) 777-SOIL (777-7645)

Phone: (800) 882-9489 Fax: (817) 649-7816

e-mail: bonterra@moscow.com

#### **Product: Hydromulch**

**Application:** Slope rehabilitation and stabilization. The products are often used for revegetation after large forest fires as well as stabilizing large road cuts. Probably limited in forestry practices; however, information is available if the need arises.

Quantities: 40 bales per ton

Rates: Average application rates vary but average 800 lbs. of fiber per acre.

**Prices:** Average price is \$250 per ton.

#### **Distributors:**

Dyna Turf Fibers Wood Recycling, Inc.
Rose Niemi Woburn, MA 01801
1125 Muscat Avenue (800) 850-9752
Sanger, CA 93657 \*Free video available.

Phone: (888) Buy Turf or (559) 875-0493

Fax: (559) 875-0667

Spittle Enterprises, Inc. (Product is called Terramulch) Kevin Spittle P.O. Box 1918 Huntersville, NC 28070

Phone: (800) 726-6414 or (704) 822-6511

Fax: (704) 827-9398

**Product: Hydroseeders** 

**Application:** Use in applying hydromulches.

**Prices:** Prices range from \$7,500 for 300 gallon seeders to \$40,000 for 2,000 gallon seeders.

#### **Distributor:**

Finn Corporation 9281 LeSaint Drive Fairfield, OH 45014

Phone: (800) 543-7166 or (513) 874-2818

Fax: (513) 874-2914

# FILL MATERIALS

## **Southeast Texas:**

| <u>Distributor</u>                 | <u>Phone</u>   | <u>Product</u>    |
|------------------------------------|----------------|-------------------|
| Wayne Hooks – Grisham Construction | (409) 661-0717 | Slag              |
| Smith & Company                    | (409) 756-6960 | Crushed Limestone |
| WM. Acreman                        | (409) 756-3634 | Fill Dirt         |
|                                    |                | Crushed Limestone |
| Deanco                             | (281) 356-8417 | Crushed Limestone |
| Nathan Hoagland Construction       | (409) 264-3322 | Crushed Sandstone |
| -                                  |                | Crushed Concrete  |
|                                    |                | Fill Dirt         |
|                                    |                | Crushed Asphalt   |

# **Northeast Texas:**

| <u>Distributor</u>                   | <u>Phone</u>   | Product                                 |
|--------------------------------------|----------------|-----------------------------------------|
| Lee's Gravel                         | (903) 756-5387 | Iron Ore<br>Crushed Limestone           |
| Transit Mix Concrete & Materials Co. | (409) 569-9571 | Crushed Concrete Crushed Limestone      |
| East Texas Asphalt                   | (409) 639-2216 | Crushed Limestone<br>Filtered Limestone |

| <b>Product</b>    | Cost Per Ton*                                   |
|-------------------|-------------------------------------------------|
| Crushed Limestone | \$20.00 - \$32.00                               |
| Slag              | \$6.50                                          |
| Fill Dirt         | \$6.00 - \$7.50                                 |
| Crushed Concrete  | \$5.00                                          |
| Crushed Sandstone | Price based on distance. Please call for quote. |
| Crushed Asphalt   | Price based on distance. Please call for quote. |
| Iron Ore          | Price based on distance. Please call for quote. |

<sup>\*</sup>Note that one ton is equal to approximately 1.35 cubic yard. Price does not include hauling fee. Some businesses charge flat rates per mile and some charge hourly fees.

# Great Trinity Forest Management Plan Sources and Contacts Native Grass Seed Suppliers

#### **Native Grass Seed Suppliers**

The following is a partial list of some of the larger native grass seed suppliers in Texas provided by Native Prairies Association of Texas <a href="http://texasprairie.org/">http://texasprairie.org/</a>.

Native American Seed <a href="http://www.seedsource.com">http://www.seedsource.com</a>

Bamert Seed Co. of Muleshoe 800-262-9892

Bob Turner Seed Co. of Breckenridge 817-559-2065

Curtis and Curtis in New Mexico has seed for west Texas.

<u>Douglass King's Seed Co.</u> of San Antonio 210-661-4191

Foster-Rambie Grass Seed of Uvalde 512-278-2711

George Warner Seed Co. of Hereford 806-364-4470

Harpool Seed Inc of Dallas 214-421-7181

High Plains Native Grass, Inc of Maple 806-927-5545

Sharp Brothers Seed Co. of Amarillo 806-352-2781

An up-to-date list of grass and wildflower seed suppliers and nurseries can be obtained from the <u>Lady Bird Johnson Wildflower Center</u> 4801 Lacrosse Avenue in Austin, 78739-1702 (512-292-4200). Or go to the <u>Texas NRCS website</u>, then click on plant materials information. It provides a list of many species native and exotic and suppliers.

United States Department of Agriculture

Forest Service

#### **Southern Region**

State and Private Forestry

Cooperative Forestry

Miscellaneous ReportR8-MR 33

# **COMMERCIAL SUPPLIERS**

OF

TREE AND SHRUB SEED

IN THE

**UNITED STATES** 



DECEMBER 1995

# Introduction

**The purpose** of this directory is to provide a list of possible vendors of tree and shrub seed for those persons involved in the regeneration and maintenance of plant communities.

The information in this directory was compiled from data furnished by the vendors who responded to a letter sent to all commercial dealers of which the Forest Service of the U.S. Department of Agriculture and the State Foresters had a record. Endorsement of a dealer or the dealer's product is not intended and must not be inferred. Any vendor who was not included in this volume should contact the address below to be included in the next revision.

National Tree Seed Laboratory 5675 Riggins Mill Road Dry Branch, Georgia 31020-9696

Telephone: 478-751-3551

Fax: 478-751-4135

# $To\ Use\ This\ Directory, {\it follow\ this\ chart}.$

| If you need to:                                   | Use:      | To Find:                                                                                                               |
|---------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------|
| Learn what is important to know when buying seed. | Section 1 | o Information on seed origin. o Information on seed quality.                                                           |
| Contact a specific seed vendor.                   | Section 2 | o Names<br>o Mailing addresses<br>o Telephone Numbers<br>o Fax Numbers                                                 |
| Find a vendor to provide a specific service.      | Section 3 | o Information on the services provided by each vendor.                                                                 |
| Find a supplier of a kind of seed.                | Section 4 | o An alphabetic list of all species of tree and shrub seed sold in the U.S. The list is cross referenced to section 1. |
| Find a scientific name using a common name.       | Section 5 | o An alphabetic list of common names of some trees and shrubs.                                                         |

# Section 1. Suggested Guidelines for Purchasing Seed

- Geographic Origin of Seeds
- Seed Testing
- What Tests Should be Performed
- Where Can Seed be Tested

## Geographic Origin of Seed

Most sellers of seed in this directory will, upon request, furnish data on the origin of the seed they sell. Some vendors certify seed. Seed certified in regard to geographic origin or genetic identity is defined as having used a third party to make inspection of the seed production process in order to provide verification of genetic identity. The third party in the United States is a state Crop Improvement Agency or a state Department of Agriculture. A crop improvement agency is an independent agency created by the state government to be the official agency for certifying seed within the state.

Research in this country and other countries has proved the general superiority of tree and shrub plantings made with planting stock from seed of local origin. Seed of local origin is seed from an area subject to similar climatic influence, usually within 100 miles of the planting site and differing in elevation by less than 1,000 feet in elevation.

If seed of local origin is not available, the best second choice is seed from a region having environmental factors comparable to those at the planned planting site. Such factors include length of growing season, day length, maximum and minimum growing season temperatures, and rainfall amount and distribution.

Source identified seed is labeled with yellow tags in seed certification programs. A yellow tag will tell if the seed was collected in wild stands and would be useful in identifying local sources. The tag will be attached to the seed container in a tamper-evident manner.

In some intensive forms of cultivation such as short rotation wood production, urban or ornamental plantings, or Christmas tree production, seed has been successfully moved great distances beyond local boundaries. This should, however, only be practiced after obtaining all available information on the risks and benefits of the move. Also, occasionally, in these intensive forms of cultivation higher levels of genetic selection are certified. These higher levels are essentially of two types, phenotypically selected, and proven genetic superiority. Different colored tags are used for each level of genetic selection.

# **Seed Testing**

Seed testing refers to the testing of the purity, moisture content, weight, and viability of the seed. Knowing the values of these quality variables is very important in establishing the dollar value of seed and its suitability for different types of regeneration. The most accurate and reliable way to test the seed is to have a sample drawn from the seed lot by an independent third party who submits it for testing to a testing laboratory skilled in testing the kind of seed in question. The least reliable is to take the word of the vendor who cut a few seeds with a pocket knife to estimate the quality. An accurate testing procedure could cost \$20 to \$100 per seed lot, but the use of poor quality seed could result in partial or complete failure resulting in millions of dollars in loses. There is rarely a good excuse for not having a laboratory test seed before paying for it.

**Viability** can be estimated in several ways. The best procedure is to have a germination test. This test is usually more objective because you can actually see the seedlings and their characteristics. For difficult to germinate species, estimates of viability are sometimes best made with procedures that excise the embryo from the seed and germinate just the embryo (this is called an excised embryo test) or procedures that use vital stains that stain the seed in a way that allow the living tissue to be differentiated from the nonliving. The use of x-ray is a third alternative to quickly estimate viability. An x-ray test is simply a picture of the tissues that make up the seed. This test alone may not be as accurate as an excised embryo or a chemical stain.

**Moisture content** is very important because it so closely regulates the viability of the seed. Most temperate species of seed will live only a brief period if they are above 10% in moisture content. A few such as oaks, silver maple, and walnuts must be kept moist to preserve viability. It is important to know the characteristics of the seed you work with. The moisture content will also determine how much water you pay for and how much seed you pay for.

**Purity** is an estimate of the percentage by weight of the amount of pure seed in a seed lot. The maximum purity is 100. The higher the purity, the more pure seed is in the seed lot.

**Seed weight** is the number of seeds per pound (or per kilogram) of pure seed. The larger the seeds the fewer seeds there are per unit weight (pound or kilogram).

**Pure live seed per pound** is the product of purity, seed weight and viability. It tells how many potential seedlings there are in a unit weight of seed as it is offered for sale. In general, the higher this value, the higher is the seed quality.

# What test should be done on the seed I buy?

As a minimum, the moisture content and the viability of the seed should be known. The viability must be known because dead or low viability seed is of little value. Even if the vendor refunds your money, you have not obtained the plants that were desired. For general nursery usage, a viability of 80% is often required as a minimum. The higher the quality standards are for seedlings, the higher must be the quality of the seed. Many more modern nursery procedures require germination of 90% or higher for efficient operation. High viability may be difficult to acquire for some species because they are mechanically fragile or deteriorate rapidly.

## Where can seed be tested?

There are both private and public laboratories in the U.S. that can test tree and shrub seed. It is good to know the qualifications of the laboratory to conduct tests. For instance, is the laboratory a member of the Association of Official Seed Analysts? Is the laboratory familiar with the species to be tested? What other training might the analyst have? The vendor should know the location of a good laboratory. If the vendor does not know, then you can contact your state's forestry agency or the National Tree Seed Laboratory at the address given in the introduction.

# Section 2. Contacting a Specific Seed Vendor.

The list in this section provides the information needed to contact seed vendors by mail service, telephone or fax. The vendors are listed alphabetically. The number to the left of the vendor's name is the reference number used in Section 3, Vendor Services and Section 4, the Species Master List.

The information provided here was accurate at the time of printing. You may contact the National Tree Seed Laboratory at the address given in the introduction to receive new information, or to provide updated or additional information. Changes may occur. You may contact the National Tree Seed Laboratory at the address given in the introduction. The NTSL may have received new information, or you may assist us in updating our list. Information is always welcome about changes to this list or about vendors not included.

# COMMERCIAL SEED DEALERS AND CODE NUMBERS

|   | COMMERCIAL SEED DEA                                                                                 | LERS | AND CODE NUMBERS                                                                                          |
|---|-----------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------|
| 1 | Better Forest Tree Seeds<br>P.O. Box 709<br>Petersburg PA 16696<br>814-667-5088<br>814-667-5089 Fax | 8    | Clyde Robin Seed Co., Inc.<br>3670 Enterprise Ave<br>Hayward CA 94545<br>510-785-0425<br>510-785-6463 Fax |
| 2 | Blue Ridge Evergreen Nursery<br>Rt. 4, Box 599<br>Boone NC 28607                                    | 9    | Comstock Seed<br>8520 West 4th St<br>Reno NV 89523<br>702-746-3681                                        |
| 3 | Brown Seed Company<br>P0 Box 1792<br>Vancouver WA 98668<br>206-892-4111<br>206-892-1781 Fax         | 10   | Container Corporation of America<br>P0 Box 626<br>Callahan FL 32011<br>904-879-3051<br>904-879-1537 Fax   |
| 4 | Callahan Seeds<br>6054 Foley Lane<br>Central Point OR 97502<br>541-855-1164                         | 11   | Dean Swift Seed Company P0 Box B Jaroso CO 81138 719-672-3739 719-672-3865                                |
| 5 | Carter Seeds<br>475 Mar Vista Rd<br>Vista CA 92083<br>619-724-5931<br>619-724-8832 Fax              | 12   | OUT OF BUSINESS<br>Dow Seeds Hawaii Ltd.                                                                  |
| 6 | Cascade Forest Nursery<br>Rt. 2<br>Cascade IA 52033<br>319-852-3042                                 | 13   | Early Bird Nursery<br>2875 Salem Rd<br>Parrottsville TN 37843<br>615-625-1362                             |
| 7 | Charles Inouye & Sons<br>Box 937<br>Gunnison UT 84634<br>801-528-7863                               | 14   | F.W. Schumacher Co., Inc.<br>36 Spring Hill Rd<br>Sandwich MA 02563<br>508-888-0659<br>508-833-0322 Fax   |

| 15 | Federal Paper Board Co., Inc.<br>P0 Box 1007<br>Lumberton, NC 28359<br>919-621-1551<br>919-739-1302 Fax       | 22 | Inter Ag Seed Company<br>3720 64th St<br>Holland MI 49423<br>616-857-1209                                         |
|----|---------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------|
| 16 | Forest Seeds of California<br>1100 Indian Hill Rd<br>Placerville CA 95667<br>916-621-1551<br>916-626-6926 Fax | 23 | Intermountain Seed Company 445 South 1st E., Box 62 Ephraim UT 84627 801-283-4383 801-283-4388 Fax                |
| 17 | Granite Seed Company<br>P0 Box 177<br>Lehi UT 84043<br>801-531-1456<br>801-768-3697 Fax                       | 24 | International Forest Seed Co.<br>P0 Box 490, Simpson Rd<br>Odenville AL 35120<br>205-629-6461<br>205-629-6671 Fax |
| 18 | Great Northern Seed Company<br>1002 Hamilton St<br>Wausau WI 54401<br>715-845-7752                            | 25 | K & S Jeane Seed Inc.<br>P0 Box 21<br>Quitman LA 71268<br>318-259-2088<br>318-259-2088 Fax                        |
| 19 | OUT OF BUSINESS<br>Herbst Tree Seed Inc                                                                       | 26 | Lafara Tree Seed Company<br>Rt 3, Box 172-1<br>Cloverdale IN 46120<br>317-528-2732                                |
| 20 | Hicks Seed Company<br>2747 State Road 76<br>Willow Springs MI 65793<br>417-469-3181<br>417-469-1239 Fax       | 27 | Land of the Sky Nurseries<br>108 Lakewood Dr<br>Asheville NC 28803<br>704-252-5962                                |
| 21 | Indiana Propagation Company<br>#3 Lyon Block<br>Salem IN 47167<br>812-358-5262                                | 28 | Lawyer Nursery, Inc.<br>950 Highway 200 West<br>Plains MT 59859<br>406-826-3881<br>406-826-5700 Fax               |

| 29 | Louisiana Forest Seed Co., Inc.<br>303 Forestry Rd<br>Lecompte LA 71346<br>318-443-5026<br>318-487-0316 Fax   | 36 | Northwest Seed Company<br>38050 Highway 228<br>Brownsville OR 97327<br>503-367-5767<br>503-367-6587 Fax           |
|----|---------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------|
| 30 | Lovelace Seeds, Inc. Browns Mill Rd Elsberry MO 63343 314-898-2103 314-898-2855 Fax                           | 37 | Pacific Forest Seeds<br>1075 Meridian Brownsboro Rd<br>Eagle Point OR 97524<br>503-826-6900<br>503-826-6900 Fax   |
| 31 | Maple Leaf Industries, Inc.<br>Box 9-6, 480 South 50 East<br>Ephraim UT 84627<br>801-283-4701<br>801-283-6872 | 38 | Pakulak Seed and Nursery Co.<br>4293 West Hansen Rd<br>Ludington MI 49431<br>616-845-6375<br>616-845-1887 Fax     |
| 32 | Mistletoe Sales<br>780 North Glen Annie Rd<br>Goleta CA 93117<br>805-968-4818<br>805-968-2242 Fax             | 39 | Pecoff Brothers Nursery & Seed<br>20220 Elfin Forest Rd<br>Escondido CA 92029<br>619-744-3120<br>619-744-8614 Fax |
| 33 | Mortensen Landscaping, Inc.<br>N 7512 Bruce Rd<br>Spokane WA 99207<br>509-924-2414                            | 40 | Plants of the Southwest<br>Rt 6, Box 11-A<br>Santa Fe NM 87501<br>505-438-8888                                    |
| 34 | NORTHPLAN/Mountain Seed<br>P0 Box 9107<br>Moscow ID 83843<br>208-882-8040<br>208-882-7446 Fax                 | 41 | Resource Mgmt Service, Inc.<br>P0 Box 43388<br>Birmingham AL 35243<br>205-991-9516<br>205-991-2807 Fax            |
| 35 | Native Seed Foundation<br>Star Route<br>Moyie Springs ID 83845<br>208-267-7938<br>208-267-3265 Fax            | 42 | 5 & R Seed Dealers, Inc.<br>P0 Box 1087<br>Cass Lake MN 56633<br>218-335-2363                                     |

| 43 | Sheffield1s Seed Co., Inc.<br>273 Auburn Rd Rt. 34<br>Locke NY 13092<br>315-497-1058<br>315-497-1059 Fax | 50 | Tree Improvement Enterprises, Inc. P0 Box 630 Cottage Grove OR 97424 503-942-4066 503-942-0110 Fax       |
|----|----------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------|
| 44 | Silvaseed Company<br>P0 Box 118<br>Roy WA 98580<br>206-843-2246<br>206-843-2239 Fax                      | 51 | Vans Pines Inc.<br>7550 144th Ave<br>West Olive MI 49460<br>616-399-1620<br>616-399-1652 Fax             |
| 45 | Smith Nursery Co.<br>P0 Box 515<br>Charles City IA 50616<br>515-228-3239                                 | 52 | Wapumne Native Plant Nursery Co.<br>3807 Mt. Pleasant Rd<br>Lincoln CA 95648<br>916-645-9737             |
| 46 | Southern Seed Company<br>P0 Box 340<br>Baldwin GA 30511<br>706-778-4542<br>706-776-2736 Fax              | 53 | West Tennessee Forest Seed Co. 720 Nancy Dr Brownsville TN 38012 901-548-4043 901-772-7795 Fax           |
| 47 | Stevenson Intermountain Seed<br>P0 Box 2<br>Ephraim UT 84627<br>801-283-6639<br>801-283-4155 Fax         | 54 | Western Native Seed<br>P0 Box 1463<br>Salida CO 81201<br>719-539-1071<br>719-539-6755 Fax                |
| 48 | Syverson Seed<br>P0 Box 520<br>Ridgefield WA 98642<br>206-887-4094<br>206-887-4094 Fax                   | 55 | Weyerhauser Company<br>33405 8th Ave., South<br>Federal Way WA 98003<br>206-924-3292<br>206-924-3453 Fax |
| 49 | Timberline Tree Seed<br>9100 Abbey Rd<br>Pueblo CO 81004<br>719-564-6120<br>719-564-6120 Fax             | 56 | Wild Seed Inc.<br>P.O. Box 27751<br>Tempe AZ 85285<br>602-276-3536<br>602-276-3524 fax                   |
| 57 | Williams Tree Seeds<br>Rt 4, Box 275-B<br>Bemidji MN 566Ol 218-751-7957                                  | 58 | Wind River Seed<br>Rt 1, Box 97<br>Manderson WY 82432<br>307-568-3325<br>307-568-3325 Fax                |

# Section 3. Vendor Services.

Vendors included in this directory were asked to answer the following questions. Their answers are listed on the following three pages.

- o Does your company have a catalog?
- o Can you supply source information on the seed?
- o Can you formally certify the seed source?
- o Do you maintain an inventory of seed?
- o Can you supply seed test data on your seed?
  - o Were tests performed in accordance with Association of Official Seed Analysts

Rules for Testing Seeds?

- o Do you make special collections?
- o Do you have a minimum order?
  - o What is your minimum order?

# SEED DEALERS BACKGROUND INFORMATION

| COMPANY<br>NUMBER | CATALOG | SOURCE | CERTIF-<br>ICATION | INVENTORY | TESTS    | COLLECTION | MINIMUM     |
|-------------------|---------|--------|--------------------|-----------|----------|------------|-------------|
| 1                 | Yes     | Yes    |                    |           |          |            |             |
| 2                 | No      | Yes    | Yes                | Yes       | Yes-AOSA | No         | Yes 1 lb.   |
| 3                 | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes 1 lb.   |
| 4                 | Yes     | Yes    | Yes                | Yes       | Yes-AOSA | Yes        | Yes         |
| 5                 | Yes     | Yes    | No                 | Yes       | Yes      | Yes        | Yes         |
| 6                 | Yes     | Yes    | Yes                | Yes       | No       | Yes        | Yes-\$20.00 |
| 7                 | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | No          |
| 8                 | Yes     | Yes    | No                 | Yes       | Yes      | Yes        | No          |
| 9                 | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | No          |
| 10                | No      | Yes    | No                 | Yes       | Yes      | Yes        | No          |
| 11                | Yes     | Yes    | No                 | Yes       | Yes      | Yes        | Yes 1 lb.   |
| 12                | Yes     | Yes    | No                 | Yes       | Yes      | Yes        | No          |
| 13                | Yes     | Yes    | No                 | No        | No       | No         | No          |
| 14                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | No          |
| 15                | No      | Yes    | Yes                | Yes       | Yes      | Yes        | No          |
| 16                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes 1 oz.   |
| 17                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes \$50.00 |
| 18                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | No          |
| 19                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes \$50.00 |
| 20                | Yes     | Yes    | Yes                | No        | Yes      | Yes        | No          |
| 21                | Yes     | Yes    | No                 | No        | No       | Yes        | No          |
| 22                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes 1 lb.   |
| 23                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes         |
| 24                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | No          |

# Seed Dealers Background Information

| Company<br>Number | Catalog | Source | Certif-<br>ication | Inventory | Tests    | Collection | Minimum      |
|-------------------|---------|--------|--------------------|-----------|----------|------------|--------------|
| 25                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes          |
| 26                | Yes     | Yes    | No                 | No        | No       | Yes        | No           |
| 27                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes \$25.00  |
| 28                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes \$50.00  |
| 29                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes 1 lb.    |
| 30                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | No           |
| 31                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes \$100.00 |
| 32                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes \$25.00  |
| 33                | Yes     | Yes    | No                 | No        | No       | Yes        | No           |
| 34                | Yes     | Yes    | No                 | Yes       | Yes      | Yes        | No           |
| 35                | Yes     | Yes    | No                 | No        | Yes-AOSA | Yes        | Yes \$25.00  |
| 36                | No      | Yes    | Yes                | Yes       | Yes-AOSA | Yes        | Yes \$50.00  |
| 37                | Yes     | Yes    | No                 | Yes       | Yes      | Yes        | Yes 1 lb.    |
| 38                | Yes     | Yes    | No                 | Yes       | Yes      | Yes        | Yes 1 lb.    |
| 39                | Yes     | Yes    | Yes                | Yes       | Yes      | No         | Yes \$25.00  |
| 40                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | No           |
| 41                | No      | Yes    | No                 | Yes       | Yes      | Yes        | No           |
| 42                | Yes     | Yes    | No                 | Yes       | Yes      | Yes        | No           |
| 43                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes 2 gr.    |
| 44                | Yes     | Yes    | Yes                | Yes       | Yes-AOSA | Yes        | Yes 1 lb.    |
| 45                | Yes     | No     | No                 | No        | No       | No         | No           |
| 46                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes 10 lbs.  |
| 47                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes          |
| 48                | No      | Yes    | Yes                | Yes       | Yes      | Yes        | Yes 1 lb.    |

# Seed Dealers Background Information

| Company<br>Number | Catalog | Source | Certif-<br>ication | Inventory | Tests    | Collection | Minimum      |
|-------------------|---------|--------|--------------------|-----------|----------|------------|--------------|
| 49                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | No           |
| 50                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes \$25.00  |
| 51                | Yes     | Yes    | No                 | Yes       | Yes      | Yes        | Yes          |
| 52                | No      | Yes    | No                 | Yes       | Yes      | Yes        | No           |
| 53                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | No           |
| 54                | Yes     | Yes    |                    | Yes       | Yes      | Yes        | No           |
| 55                | Yes     | Yes    | Yes                | Yes       | Yes      | Yes        | Yes \$100.00 |
| 56                | Yes     | Yes    | No                 | Yes       | Yes      | Yes        | Yes \$50.00  |
| 57                | Yes     | Yes    | Yes                | Yes       | Yes-AOSA | Yes        | No           |
| 58                | Yes     | Yes    | No                 | Yes       | Yes      | Yes        | Yes \$50.00  |

# Section 4. Species Master List with Company Numbers.

There are over 2000 species of tree and shrub seed offered for sale in the United States. Both native and exotic species are listed. They are listed alphabetically by scientific name. The common name is given to the right of the scientific name. If you do not know a species scientific name, consult Section 5, the Index of Common Plant Names. The numbers below the species name are the company numbers listed on the left of the company names in Section 2.

This list is a guide. It is designed to allow the seed buyer to quickly determine which vendor(s) sell seed of each species. When a vendor(s) number appears below the species name, that company has stated that they can supply that species. The buyer should be aware however that seed crops vary from year to year. In certain years a species may have a poor seed crop due to environmental conditions. A species genetics can also influence its seed crop. For these reasons some of the dealers listed below a species may not be able to provide seed of that species every year. The seed buyer should plan to contact seed vendors well in advance of the time they want to plant any seed.

In addition, many of the companies in this directory sell species of herbaceous plants (wildflowers, grasses) that are not listed in this directory.

# SCIENTIFIC NAME

# COMMON NAME

| Abies alba                                                                                                                                                                                                                                                                                                                                           | Fir, Silver                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 12, 14, 28, 43, 55  Abies amabilis                                                                                                                                                                                                                                                                                                                   | Fir, Pacific Silver                                                                 |
| 4, 14, 36, 43, 44 <i>Abies balsamea</i>                                                                                                                                                                                                                                                                                                              | Fir, Balsam                                                                         |
| 2, 3, 4, 8, 12, 14, 19, 28, 42, 43, 44, 51, 55, 57<br>Abies bornmuelleriana<br>3, 4, 14, 43                                                                                                                                                                                                                                                          | Fir, Turkish                                                                        |
| <i>Abies bracteata</i><br>4, 5, 12, 32, 43                                                                                                                                                                                                                                                                                                           | Fir, Bristlecone                                                                    |
| 4, 3, 12, 32, 43 <i>Abies cephalonica</i> 4, 12, 14, 28, 43 <i>Abies cilicica</i>                                                                                                                                                                                                                                                                    | Fir, Greek                                                                          |
| 43 Abies concolor                                                                                                                                                                                                                                                                                                                                    | Eir White                                                                           |
| 1, 3, 4, 5, 8, 12, 14, 18, 19, 28, 32, 34, 36, 38, 4                                                                                                                                                                                                                                                                                                 | Fir, White 0. 43, 49, 54, 55                                                        |
| Abies concolor var. glauca                                                                                                                                                                                                                                                                                                                           | Fir, Rocky Mtn. White                                                               |
| Abies concolor var. lowiana<br>4, 14, 16, 44                                                                                                                                                                                                                                                                                                         | Fir, California White                                                               |
|                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |
| Abies ernesti                                                                                                                                                                                                                                                                                                                                        |                                                                                     |
| 43                                                                                                                                                                                                                                                                                                                                                   | Fir Momi                                                                            |
| 43<br>Abies firma                                                                                                                                                                                                                                                                                                                                    | Fir, Momi                                                                           |
| 43 Abies firma 5, 14, 43 Abies fraseri                                                                                                                                                                                                                                                                                                               | Fir, Momi<br>Fir, Fraser                                                            |
| 43 Abies firma 5, 14, 43 Abies fraseri 1, 2, 3, 5, 12, 14, 19, 27, 28, 43, 44, 51, 55 Abies grandis                                                                                                                                                                                                                                                  | Fir, Fraser<br>Fir, Grand                                                           |
| 43 Abies firma 5, 14, 43 Abies fraseri 1, 2, 3, 5, 12, 14, 19, 27, 28, 43, 44, 51, 55 Abies grandis 1, 3, 4, 5, 12, 14, 16, 28, 34, 36, 43, 44, 48, 49, Abies holophylla                                                                                                                                                                             | Fir, Fraser<br>Fir, Grand                                                           |
| 43 Abies firma 5, 14, 43 Abies fraseri 1, 2, 3, 5, 12, 14, 19, 27, 28, 43, 44, 51, 55 Abies grandis 1, 3, 4, 5, 12, 14, 16, 28, 34, 36, 43, 44, 48, 49, Abies holophylla 28, 43 Abies homolepsis                                                                                                                                                     | Fir, Fraser Fir, Grand 54, 55                                                       |
| 43 Abies firma 5, 14, 43 Abies fraseri 1, 2, 3, 5, 12, 14, 19, 27, 28, 43, 44, 51, 55 Abies grandis 1, 3, 4, 5, 12, 14, 16, 28, 34, 36, 43, 44, 48, 49, Abies holophylla 28, 43 Abies homolepsis 12, 14, 43 Abies koreana                                                                                                                            | Fir, Fraser Fir, Grand 54, 55 Fir, Needle                                           |
| 43 Abies firma 5, 14, 43 Abies fraseri 1, 2, 3, 5, 12, 14, 19, 27, 28, 43, 44, 51, 55 Abies grandis 1, 3, 4, 5, 12, 14, 16, 28, 34, 36, 43, 44, 48, 49, Abies holophylla 28, 43 Abies homolepsis 12, 14, 43 Abies koreana 3, 8, 12, 14, 28, 43 Abies lasiocarpa var. arizonica                                                                       | Fir, Fraser  Fir, Grand 54, 55  Fir, Needle  Fir, Nikko                             |
| 43 Abies firma 5, 14, 43 Abies fraseri 1, 2, 3, 5, 12, 14, 19, 27, 28, 43, 44, 51, 55 Abies grandis 1, 3, 4, 5, 12, 14, 16, 28, 34, 36, 43, 44, 48, 49, Abies holophylla 28, 43 Abies homolepsis 12, 14, 43 Abies koreana 3, 8, 12, 14, 28, 43 Abies lasiocarpa var. arizonica 4, 5, 11, 14, 28, 32, 43, 44, 49, 54 Abies lasiocarpa var. lasiocarpa | Fir, Fraser Fir, Grand 54, 55 Fir, Needle Fir, Nikko Fir, Korean                    |
| 43 Abies firma 5, 14, 43 Abies fraseri 1, 2, 3, 5, 12, 14, 19, 27, 28, 43, 44, 51, 55 Abies grandis 1, 3, 4, 5, 12, 14, 16, 28, 34, 36, 43, 44, 48, 49, Abies holophylla 28, 43 Abies homolepsis 12, 14, 43 Abies koreana 3, 8, 12, 14, 28, 43 Abies lasiocarpa var. arizonica 4, 5, 11, 14, 28, 32, 43, 44, 49, 54                                  | Fir, Fraser  Fir, Grand 54, 55  Fir, Needle  Fir, Nikko  Fir, Korean  Fir, Corkbark |

# **COMMON NAME**

Abies mariesii 43 Abies nephrolepis Fir, Manchurian 28, 43 Fir, Nordmann Abies nordmanniana 3, 12, 14, 23, 28, 43, 44, 55 Abies numidica Fir, Algerian 43 Abies pindrow Fir, West Himalayan 4, 12, 14, 28, 43 Fir, Spanish Abies pinsapo 4, 12, 14, 43 Fir, Noble Abies procera 3, 4, 5, 14, 28, 36, 43, 44, 48, 50 Abies religiosa Abies sachalinensis Fir, Sakhalin 14, 43 Abies sibirica Fir, Siberian 14, 22, 28, 43 Abies veitchii Fir, Veitch 14, 43 Acacia species 4, 5, 8, 12, 14, 17, 28, 32, 39, 43, 56 Chenille Plant Acalypha hispida 12 Acer x leucoderme 43 Acer argutum 43 Acer barbatum Maple, Florida 43 Acer buergeranum Maple, Trident 12, 14, 28, 43 Acer campestre Maple, Hedge 12, 14, 28, 30, 34, 43 Acer capillipes 12, 43 Acer cappadocicum

43

12, 43
Acer carpinifolium

Maple, Hornbeam

# COMMON NAME

| Acer circinatum<br>4, 14, 28, 34, 43              | Maple, Vine           |
|---------------------------------------------------|-----------------------|
| Acer cissifolium 43                               |                       |
| Acer davidii                                      |                       |
| 4, 12, 14, 28, 43<br>Acer diabolicum              |                       |
| 43<br>Acer ginnala                                | Maple, Amur           |
| 5, 8, 12, 14, 18, 19, 20, 28, 30, 33, 43, 45, 51  | •                     |
| <i>Acer glabrum</i> 4, 17, 23, 34, 35, 43, 47, 54 | Maple, Rocky Mountain |
| Acer glabrum sbsp. douglasii                      | Maple, Rocky Mountain |
| 4, 14, 28 Acer grandidentatum                     | Maple, Canyon         |
| 4, 23, 28, 43, 47<br>Acer griseum                 | Maple, Paperbark      |
| 4, 14, 20, 28, 43                                 | Maple, Laperburk      |
| Acer grosseri var. hersii<br>4, 12, 14, 43        |                       |
| Acer heldreichii                                  | Maple, Balkan         |
| 43<br>Acer japonicum                              | Maple, Japanese       |
| 12, 28, 43                                        |                       |
| Acer macrophyllum<br>4, 8, 12, 14, 16, 28, 43     | Maple, Big-leaf       |
| Acer mandshuricum                                 |                       |
| 43<br>Acer maximowiczianum                        | Maple, Nikko          |
| 43<br>Acer miyabei                                | Manla Miyahai         |
| 33, 43                                            | Maple, Miyabei        |
| Acer mono 28, 43                                  |                       |
| Acer monspessulanum                               | Maple, Montpellier    |
| 43 Acer negundo                                   | Boxelder              |
| 12, 14, 19, 28, 43, 54                            |                       |
| Acer negundo sbsp. californicum                   | Boxelder              |
| Acer nigrum                                       | Maple, Black          |
| 28, 43, 45                                        |                       |

12

## **COMMON NAME**

Acer oblongum 12, 14, 43 Acer orientale 43 Maple, Japanese Acer palmatum 3, 5, 8, 12, 14, 19, 28, 32, 43 Acer palmatum var. atropurpeum Maple, Japanese 5, 8, 12, 14, 20, 32, 43 Acer pensylvanicum Maple, Striped 18, 19, 43 Acer pentaphyllum 43 Acer platanoides Maple, Norway 5, 12, 14, 19, 26, 28, 30, 33, 43, 45 Acer platanoides var. schwedleri Maple, Schwedler 12, 14, 28, 33, 43, 45 Acer pseudoplatanus Maple, Sycamore 12, 14, 28, 33, 43 Acer rubrum Maple, Red 5, 12, 14, 18, 19, 20, 25, 26, 28, 29, 30, 32, 43, 51, 53, 57 Acer rubrum var. drummondii Maple, Drummond Red 25, 29, 43 Acer rufinerve Maple, Snake Bark 12, 28, 43 Acer saccharinum Maple, Silver 5, 12, 14, 18, 20, 21, 26, 28, 30, 32, 43, 51, 53 Acer saccharum Maple, Sugar 5, 8, 12, 14, 18, 19, 21, 26, 28, 30, 43, 45, 51, 53 Acer sieboldianum 43 Maple, Mountain Acer spicatum 18, 43 Acer tataricum Maple, Tatarian 12, 14, 28, 43 Acer triflorum Maple, Three Flowered 12, 14, 28, 43 Maple, Shantung Acer truncatum 12, 14, 28, 43 Maple, Painted Acer truncatum var. mono 14 Actinidia deliciosa Chinese Gooseberry

Adansonia digitata Baobab, Monkey-bread

Adenium obesum Desert Rose

12

Adenostoma fasciculatum Chamise - Greasewood

Adenostoma sparsifolium Ribbonwood - Redshanks

39

Aesculus x carnea Horse Chestnut, Red

43
Aesculus californica
Buckeye, California

4, 16, 43

43
Aesculus glabra var. glabra
Buckeye, Ohio

Aesculus chinensis

43

12, 32

Aesculus woerlitzensis

18, 20, 21, 43

Aesculus hippocastanum Horsechestnut 12, 14, 18, 20, 28, 33, 43

Aesculus indica
43
Aesculus octandra
Buckeye, Yellow

43

Aesculus parviflora Buckeye, Bottlebrush 20, 43

Aesculus pavia Buckeye, Red

20, 25, 28, 43 Aesculus sylvatica

43
Aesculus turbinata Horse Chestnut, Japanese

43

Aesculus wilsonii

43

Agathis australis Kaori Pine

12 Agathosma ovata

12
Agave americana Century Plant

Agave attenuata

Century Frank

40

Agave attenuata

Mescal Agave parryi 40, 56 Agonis flexuosa Peppermint Tree 5, 12, 32 Willow Myrtle Agonis marginata 12 Ailanthus altissima Tree-of-Heaven 5, 12, 14, 28, 43 Akebia, Five-leaf Akebia quinata 12, 43 Akebia trifoliata Akebia, Three-leaf 12, 43 Alberta magna Alberta 12, 28 Gummifera Albizia adianthifolia 28 Albizia julibrissin Mimosa 4, 5, 14, 19, 25, 28, 29, 32, 43 Albizia lebbeck Woman's Tongue Tree 5, 12, 28, 39, 43 Albizia lophantha Albizia, Plume 5, 32, 39 Albizia lucidior 12 Albizia odoratissima Ceylon Rosewood 12 Albizia procera 12, 39 Alectryon excelsus Titoki 12 Allamanda species Allamanda 12 Allophylus dregeanus 12 Alnus cordata Alder, Italian 5, 12, 14, 28, 32, 43 Alnus firma 43 Alnus formosana

12 Alnus glutinosa

5, 12, 14, 19, 20, 28, 43

Alder, European

# **COMMON NAME**

Alnus hirsuta Alder, Manchurian

43

Alnus incana Alder, White

12, 14, 28, 34, 43 Alnus jorullensis

43

Alnus nepalensis

5, 12, 43

Alnus nitida

12

Alnus rhombifolia Alder, White

4, 5, 12, 32, 34

Alnus rubra Alder, Red

3, 4, 5, 14, 28, 34, 36, 43, 44

Alnus rugosa Alder, Speckled

18, 43

Alnus serrulata Alder, Hazel

19

Alnus sinuata

4, 34, 43

Alnus tenuifolia Alder, Mountain

4, 43

Alnus viridis Alder, European Green

12, 28, 43

Alphitonia excelsa

12

Alstonia scholaris Devil Tree

12

Ambrosia dumosa Burr Sage

9, 17, 56

Amelanchier alnifolia Serviceberry, Saskatoon

Juneberry

9, 12, 14, 17, 23, 28, 31, 34, 35, 40, 43, 45, 47, 54, 58

Amelanchier arborea

12, 14, 43

Amelanchier canadensis

14, 18, 26, 28, 30, 43, 45

Amelanchier grandiflora

30

Amelanchier laevis

18, 28, 43, 45, 51

Amelanchier lamarkii

14, 28, 43

# **COMMON NAME**

Serviceberry, Roundleaf

Amelanchier ovalis

18, 28

Amelanchier sanguinea

18, 30

Amelanchier spicata

43

Amelanchier stolonifera

43

Amelanchier utahensis

9, 17, 23, 47

Amorpha californica

4

Amorpha canescens

43, 54

Amorpha fruticosa

4, 12, 14, 28, 40, 43, 45, 54

Ampelopsis brevipedunculata

43

Anacardium occidentale

12

Annona cherimola

12

Annona reticulata

12

Antigonon leptopus

5, 32, 39

Aralia chinensis

12

Aralia elata

28, 43

Aralia spinosa

25, 43

Araucaria angustifolia

12, 43

Araucaria araucana

4, 12, 28, 43

Araucaria bidwillii

5, 12, 43

Araucaria columnaris

12

Araucaria heterophylla

5, 12, 14, 28, 32, 43

Serviceberry, Desert

False Indigo, California

Lead Plant

Indigo Bush

Cashew

Cherimoya

Bullock's-heart

Coral Vine

Chinese Angelica

Japanese Angelica

Devils-walkingstick

Parana Pine

Monkey-puzzle

Bunya-bunya

New Caledonia Pine

Norfolk Island Pine

SCIENTIFIC NAME **COMMON NAME** Araujia sericifera Bladder-flower 12 Arbutus arizonica Arbutus glandulosa Arbutus menziesii Madrona 4, 5 Arbutus unedo Strawberry Tree 4, 5, 12, 32, 43 Arbutus xalapensis 4, 40 Archontophoenix alexandrae Palm, Alexandra 12, 28 Archontophoenix cunninghamiana Palm, Piccabeen 5, 12, 32 Arcocarpus fraxinifolius Shingle Tree 12 Arctostaphylos species Manzanita 4, 28, 34, 39, 43, 54 Arctostaphylos uva-ursi Bearberry 4, 12, 14, 28, 34, 35, 40, 43, 54 Coralberry Ardisia crenata 12, 32 Ardisia humilis 12 Ardisia macrocarpa Areca triandra 12 Arecastrum romanzoffianum Palm, Queen 5, 12, 32, 39 Sugar Palm Arenga pinnata 12 Birthwort Aristolochia californica Aristolochia durior Dutchman's Pipe 14, 43 Calico Flower Aristolochia elegans 12 Aristotelia serrata

# **COMMON NAME**

Aronia x prunifolia Aronia arbutifolia Chokeberry, Red 14, 43 Aronia brilliantissima Chokeberry 14, 30, 43 Aronia melanocarpa Chokeberry, Black 14, 18, 28, 43 Artemisia californica Sagebrush, California 8, 39 Sagebrush, Silver Artemisia cana 9, 17, 23, 28, 31, 34, 47, 58 Artemisia filifolia Sagebrush, Sand 9, 23, 31, 40 Artemisia frigida Sagebrush, Fringed 9, 17, 23, 28, 31, 40, 47, 54, 58 Artemisia ludoviciana Sagebrush, Prairie 9, 17, 32, 40, 47, 55, 58 Sagebrush, Black Artemisia nova 9, 17, 23, 31, 47, 54, 58 Artemisia pycnocephala Wormwood, Sandhill 8, 12 Artemisia tridentata var. tridentata Sagebrush, Basin 8, 9, 12, 17, 23, 28, 31, 34, 47, 54, 58 Artemisia tridentata var. vasevana Sagebrush, Mountain Big 9, 17, 23, 28, 31, 34, 40, 47, 58 Artemisia tridentata var. wyomingensis Sagebrush, Wyoming Big 9, 17, 23, 28, 31, 34, 47, 58 Artemisia vulgaris Mugwort 43 Pawpaw, Small Flower Asimina parviflora 25 Asimina triloba **Pawpaw** 12, 14, 20, 25, 28, 43, 51 Asparagus falcatus Sickle Thorn 12 Atalaya hemiglauca 12 Pencil Pine Athrotaxis cupressoides

25

Athrotaxis selaginoides

King Billy Pine

# COMMON NAME

| Atriplex canescens<br>5, 8, 9, 12, 17, 23, 28, 31, 32, 34, 40, 43, 47, 54,<br>Atriplex confertifolia | Saltbrush, Fourwing<br>56,58<br>Shadscale |
|------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 8, 9, 12, 17, 23, 28, 31, 34, 39, 49, 43, 47, 54, 58<br>Atriplex corrugata                           | 8<br>Saltbrush, Mat                       |
| 8, 17, 23, 31, 47, 58<br>Atriplex cuneata<br>17, 23, 39, 47, 58                                      | Saltbrush, Castle Valley                  |
| Atriplex gardneri<br>9, 17, 23, 31, 47, 58                                                           | Saltbrush, Gardner                        |
| Atriplex glauca<br>8, 12, 39                                                                         | Saltbush, Blue                            |
| Atriplex halimus  12                                                                                 | Sea Orach                                 |
| Atriplex hymenelytra 9, 56                                                                           | Saltbush, Desert-holly                    |
| Atriplex lentiformis 5, 8, 9, 12, 17, 32, 39, 47, 56                                                 | Quail Bush                                |
| Atriplex muelleri 12                                                                                 | Salthursh, Mueller's                      |
| Atriplex nummularia<br>8, 12, 39                                                                     | Saltbush, Old-man                         |
| Atriplex nuttallii 12, 28, 43 Atriplex polyagrag                                                     | Saltbush, Nuttalii                        |
| Atriplex polycarpa<br>5, 8, 9, 12, 17, 47, 56, 58<br>Atriplex rhagodioides<br>39                     | Saltbush, Desert                          |
| Atriplex semibaccata 5, 8, 12, 17, 28, 32                                                            | Saltbush, Australian                      |
| Atriplex tridentata 9, 17, 23, 47, 58 Atriplex undulata                                              | Saltbush, Trident                         |
| 39<br>Aucuba japonica<br>12                                                                          | Japanese Aucuba                           |
| Averrhoa carambola 12                                                                                | Carambola                                 |
| Azadirachta indica<br>12                                                                             | Neem                                      |
| Baccharis pilularis<br>5, 8                                                                          | Coyote Bush                               |

**COMMON NAME** 

Baccharis sarothroides

8, 17, 40

Banksia species

12

Barringtonia acutangula

12

Bauhinia acuminata

12

Bauhinia galpinii

12, 28, 32

Bauhinia monandra

12, 32

Bauhinia natalensis

12

Bauhinia purpurea

5, 14, 28, 32, 43, 56

Bauhinia racemosa

12

Bauhinia vahlii

12

Bauhinia variegata var.. candida

5, 12, 28, 32, 43

Beaucarnea recurvata

5, 12, 32

Beaumontia grandiflora

12

Beilschmiedia tawa

12

Berberis amurensis

43

Berberis aristata

12

Berberis canadensis

43

Berberis chinensis

43

Berberis koreana

43

Berberis oblonga

43

Berberis thunbergii

5, 12, 14, 19, 28, 30, 32, 43

Rosin Brush

Indian Oak

Bauhinia, Dwarf White

Bauhinia, Red

**Butterfly Flower** 

Orchid Tree, Butterfly

Malu Creeper

Orchid Tree

Elephant-foot Tree

Easter-lily-vine

3

Barberry, American

Barberry, Japanese

## **COMMON NAME**

Berberis wilsoniae

43

Berzelia species

12

Betula alba-sinensis Birch, Chinese Paper

12, 14, 28, 43

Betula alleghaniensis Birch, Yellow

12, 14, 18, 19, 28, 43, 45

Betula apoiensis

43

Betula costata Birch, Costata

28, 43

Betula davurica Birch, Dahurian

14, 28, 43

Betula ermanii Birch, Gold

12, 14, 28, 43

Betula grossa Birch, Japanese Cherry

43

Betula jacquemontii

12, 14, 43

Betula lenta Birch, Sweet

14, 18, 28, 43

Betula maximowicziana Birch, Monarch

12, 14, 28, 43

Betula nana Birch, Dwarf

39

Betula nigra Birch, River

5, 12, 14, 19, 20, 25, 28, 29, 30, 32, 43, 45, 51, 53, 54

Betula occidentalis Birch, Water

4, 12, 34

Betula papyrifera Birch, Paper

5, 12, 14, 18, 19, 28, 34, 35, 43, 46, 51, 57

Betula papyrifera var. subcordata Birch, Northwest Paper

4

Betula pendula Birch, European White

5, 12, 14, 19, 28, 30, 32, 43, 45, 51

Betula platyphylla var. japonica Birch, Japanese White

12, 14, 19, 28, 43

Betula populifolia Birch, Gray

12, 14, 18, 19, 28, 43, 45

Betula pubescens Birch, White

12, 28, 43

**SCIENTIFIC NAME COMMON NAME** Betula pumila Birch, Low 43 Betula schmidtii 43 Birch, Tian Shan Mtn. Betula tianschanica 14, 28 Betula uber 43 Betula utilis Birch, Himalayan 12, 14, 28, 43 Billardiera longiflora 12 Bischofia trifoliata 12 Bismarckia nobilis 12 Rhodesian Wisteria Bolusanthus speciosus 12 Palm, Tala Borassus flabellifer 12 Boronia species 12 Boscia albitrunca Shepherds Tree 12, 28 Brachychiton acerifolius Bottle Tree, Flame 5, 12, 28, 32 Brachychiton discolor Bottle Tree, Scrub 5, 28, 32 Brachychiton gregorii Desert Kurrajong Kurrajong Brachychiton populneus 5, 12, 28, 32 Narrow-leaved Bottle Tree Brachychiton rupestris Brachyglottis repanda

Brahea armata 12, 32 Brahea edulis 12

12

Brassaia actinophylla Australian Umbrella Tree 12

Palm, Blue Hesper

Guadeloupe Palm

**COMMON NAME** 

Broussonetia papyrifera

12

Brunfelsia pauciflora

12, 32

Buddleia asiatica

12

Buddleia davidii

12, 14, 28, 43

Bumelia lanuginosa

43

Butia capitata

5, 12, 14, 28, 32

Buxus sempervirens

28, 43

Buxus sinica

28

Caesalpinia decapetala

12

Caesalpinia gilliesii

4, 12, 32, 56

Caesalpinia mexicana

4, 12, 56

Caesalpinia pulcherrima

4, 12, 32, 40, 56

Caesalpinia spinosa

39

Cajanus cajan

12

Calliandra eriophylla

4, 56

Callicarpa americana

12, 25

Callicarpa dichotoma

14, 43

Callicarpa japonica

43

Callicarpa mollis

43

Callistemon acuminatus

12

Paper Mulberry

Morning-Noon-and-Night

Summer Lilac

Chittamwood

Palm, Jelly

Boxwood

Boxwood, Chinese

Mysore Thorn

Bird-of-Paradise

Poinciana, Mexican

Barbados-Pride

Tara

Cajan, Pigeon-pea

Fairy-duster

Beautyberry

# **COMMON NAME**

Callistemon brachyandrus

12

Callistemon citrinus

5, 12, 28, 32

Callistemon citrinus var. splendens

12, 28

Callistemon linearifolius

5, 12, 32

Callistemon macropunctatus

12

Callistemon pachyphyllus

12

Callistemon pallidus

12

Callistemon paludosus

12

Callistemon phoeniceus

12

Callistemon pinifolius

12

Callistemon rigidus

5, 12, 32

Callistemon salignus

5, 12, 32

Callistemon sieberi

12

Callistemon teretifolius

12

Callistemon viminalis

5, 12, 28, 32

Callitris species

4, 12

Calluna vulgaris

12, 14, 28, 43

Calocedrus decurrens

3, 4, 5, 12, 14, 16, 28, 32, 36, 37, 43, 44, 55

Calocedrus formosana

4

Calocedrus macrolepis

4

Calodendrum capense

12

Bottlebrush, Crimson

Bottlebrush, Crimson

Bottlebrush, Weeping

Cypress Pine

Heather

Incense-cedar

Incense Cedar, Formosa

Incense Cedar, Chinese

Cape Chestnut

Calothamnus species Netbush

12

Calotropis procera Madar - Mudar

39

Calycanthus floridus Sweet Shrub

5, 12, 14, 19, 43

Calycanthus occidentalis Western Spicebush

4

Camellia japonica Camellia

14, 43

Camellia oleifera Tea-oil Plant

43

Camellia sasanqua Camellia, Sasanqua

12, 14, 43

Camellia sinensis Tea

12

Campsis radicans Trumpet Creeper

5, 12, 14, 19, 20, 28, 34, 43

Camptotheca acuminata Camptotheca

12, 14, 28

Capparis spinosa Caper Bush

14, 43

Caragana arborescens Peashrub, Siberian

9, 12, 14, 19, 28, 34, 43, 45, 54, 57, 58

Caragana boisii

12

Caragana microphylla Caragana, Littleleaf

12, 28, 43

Caragana zahlbruckneri var. pekinensis Tupelo, Ogeechee Lime

43

Carica papaya Papaya

5, 12, 28, 32

Carissa grandiflora Natal Plum

5, 12, 14, 32

Carludovica palmata Panama-Hat Plant

12, 32

Carmichaelia species

12

Carnegia gigantea Saguaro

56

Carpentaria acuminata

# SCIENTIFIC NAME Carpenteria californica 4, 5, 12 Carpinus betulus 5, 12, 14, 19, 28, 43 Carpinus caroliniana 14, 18, 19, 28, 43 Carpinus cordata Carpinus cordata Carpinus cordata Common Name Tree Anemone Hornbeam, European Hornbeam, American

14, 18, 19, 28, 43
Carpinus cordata
43
Carpinus japonica

43

Carpinus laxiflora
14, 43
Carpinus orientalis
Hornbeam, Oriental

Carpinus orientatis
28, 43
Carpinus tschonoskii
43
Carpinus turczaninovii
43
Carpodetus serratus

12
Carya aquatica
25, 29, 43
Hickory, Water

Carya cordiformis Hickory, Bitternut 20, 25, 43

*Carya glabra* Hickory, Pignut 20, 21, 25, 43, 45, 53

Carya illinoensis Pecan 12, 14, 20, 25, 28, 29, 30, 43, 45, 51

Carya laciniosa Hickory, Shellbark

12, 14, 20, 21, 28, 30, 43, 45, 51, 53

Carya myristicaeformis Hickory, Nutmeg

25, 29, 43 *Carya ovata*5, 12, 14, 20, 21, 25, 28, 29, 30, 43, 45, 51, 53

Hickory, Shagbark

Carya pallida Hickory, Sand

43
Carya texana
Hickory, Black
43

Carya tomentosa Hickory, Mockernut

20, 21, 25, 29, 43, 45, 53

Carvota species Palm Fishtail

Caryota species Palm, Fishtail 12

**COMMON NAME** 

Cassia armata

39

Cassia artemisioides

5, 12, 32, 39, 56

Cassia australis

12

Cassia circinnata

12

Cassia eremophila

5, 12, 32, 56

Cassia fistula

5, 12

Cassia grandis

12

Cassia hebecarpa

43

Cassia javanica

12

Cassia leptophylla

5, 32

Cassia oligophylla

12

Cassia renigera

12

Cassia siamea

5, 12, 28

Cassia sturtii

5, 12, 32, 56

Cassia tomentosa

5, 12, 32

Castanea dentata

4, 43

Castanea mollisima

14, 19, 20, 28, 30, 43, 51

Castanea pumila

19, 25

Castanea sativa

43

Castanopsis chrysophylla

16, 43

Castanopsis sempervirens

9

Senna, Wormwood

Cassia, Desert

Golden-shower

Pink-shower

Senna, Wild

Cassia, Apple-blossom

Kassod Tree

Chestnut, American

Chestnut, Chinese

Chinquapin

Chestnut, Spanish

Chinquapin, Giant

Chinquapin, Sierra

## **COMMON NAME**

Castanospermum australe

12

Casuarina cristata

12

Casuarina cunninghamiana

5, 12, 14, 28, 32, 43

Casuarina equisetifolia 5, 12, 28, 32, 39, 43

Casuarina fraseriana

12

Casuarina glauca

12

Casuarina littoralis

12

Casuarina stricta

12

Casuarina torulosa

12

Catalpa bignonioides

12, 14, 25, 28, 39, 43

Catalpa ovata

12, 28, 43

Catalpa speciosa

5, 12, 14, 19, 28, 43, 51

Ceanothus americanus

43

Ceanothus arboreus

4

Ceanothus cordulatus

4, 8, 9, 39

Ceanothus cuneatus

4, 8, 9, 12, 34

Ceanothus cyaneus

4, 39

Ceanothus impressus

4, 5, 8, 12

Ceanothus incanus

4

Ceanothus integerrimus

4, 5, 8, 9, 12, 14, 28, 34

Ceanothus jepsonii

4

Australian Chestnut

Beefwood

Beefwood, Horsetail, Tree

Catalpa, Southern

Catalpa, Chinese

Catalpa, Northern

New Jersey Tea

Ceanothus, Feltleaf

Buckbrush, Snowbush

Buckbrush

Ceanothus, San Diego

Ceanothus, Santa Barbara

Whitethorn, Coast

Buckbrush, Deerbrush

Jepsons Hollybush

SCIENTIFIC NAME **COMMON NAME** Ceanothus lemmonii Ceanothus, Lemmon's 4, 34 Ceanothus leucodermis Whitethorn, Chaparral Ceanothus megacarpus Ceanothus, Big-pod 4, 12 Ceanothus palmeri Ceanothus, Palmer Ceanothus papillosus Ceanothus, Wart Leaf Ceanothus parryi Ceanothus, Parry Ceanothus prostratus Buckbrush, Mahala-mat 4, 5, 8, 9, 12, 14, 28, 34 Ceanothus pumilus Siskiyou-mat Ceanothus sanguineus Buckbrush, Wild Lilac 4, 8, 9, 14, 17, 28, 34, 35, 58 Ceanothus sorediatus Jim Bush 4, 9 Ceanothus spinosus Ceanothus, Green-bark 4, 9 Ceanothus thyrsiflorus Blueblossom 4, 9 Ceanothus tomentosus Ceanothus, Woolly 4, 8, 9 Ceanothus velutinus Buckbrush 4, 9, 17, 28, 34, 35, 54, 58 Ceanothus velutinus var. laevigatus Snakewood Tree Cecropia palmata 12 Cedrela sinensis 43 Cedrela toona Toon Tree 12, 28 Cedrus atlantica Cedar, Atlas 4, 5, 12, 14, 28, 32, 43 Cedrus deodara Cedar, Deodar 3, 4, 5, 12, 14, 16, 19, 28, 32, 43, 55 Cedar-of-Lebanon Cedrus libani

5, 14, 32, 43

Celastrus orbiculatus Bittersweet, Oriental

12, 14, 28, 43 Celastrus paniculatus

12

Celastrus scandens Bittersweet, American

5, 12, 14, 19, 20, 28, 30, 43, 45, 51

Celtis africana

12

Celtis australis Hackberry, Mediterranean

5, 12, 28, 32, 43 Celtis bungeana

28

Celtis laevigata Sugarberry

25, 29, 30, 43

Celtis occidentalis Hackberry

5, 12, 14, 18, 19, 20, 21, 28, 34, 43, 45

Celtis pallida Hackberry, Desert

56

Celtis reticulata Hackberry, Net-leaved

4, 34, 54, 56

Celtis sinensis Hackberry, Japanese

5, 12, 28, 32, 43

Cephalanthus occidentalis Buttonbrush

4, 14, 20, 25, 28, 30, 43

Cephalotaxus fortunei 14, 28, 43

Cephalotaxus harringtonia var. drupacea

12, 43

Ceratoides lanata Winterfat

9, 17, 23, 28, 31, 34, 40, 47, 58

Ceratonia siliqua

Carob

5, 12, 14, 28, 32, 43
Ceratopetalum gummiferum

Ceratopetalum gummiferum

12

Cercidiphyllum japonicum Katsura Tree

14, 28, 43

Cercidium floridum Palo Verde, Blue

4, 5, 12, 17, 32, 39,56

Cercidium microphyllum Palo Verde, Foothills

4, 5, 12, 17, 32, 39, 56 Cercidium praecox Brea, Palo

ercidium praeco. 56

# **COMMON NAME**

| Cercis canadensis 5, 12, 14, 19, 20, 21, 25, 28, 29, 30, 32, 34, 43,              | Redbud, Eastern          |
|-----------------------------------------------------------------------------------|--------------------------|
| 5, 12, 14, 19, 20, 21, 23, 20, 29, 30, 32, 34, 43,<br>Cercis canadensis var. alba | Whitebud                 |
| 20, 43                                                                            | William                  |
| Cercis chinensis                                                                  | Redbud, Chinese          |
| 5, 14, 19, 28, 32, 43                                                             | 11040,44, 21111,000      |
| Cercis occidentalis                                                               | Redbud, California       |
| 4, 5, 8, 12, 14, 16, 28, 34, 37, 43                                               | ,                        |
| Cercis siliquastrum                                                               | Judas Tree               |
| 5, 12, 14, 39, 43                                                                 |                          |
| Cercocarpus betuloides                                                            |                          |
| 4, 5, 39, 43                                                                      |                          |
| Cercocarpus intricatus                                                            |                          |
| 43                                                                                |                          |
| Cercocarpus ledifolius                                                            | Curlleaf Mahogany        |
| 4, 9, 17, 23, 28, 31, 34, 40, 47, 54, 58                                          |                          |
| Cercocarpus montanus                                                              | Mountain Mahogany        |
| 9, 17, 28, 31, 34, 40, 43, 47, 54, 58                                             |                          |
| Cestrum nocturnum                                                                 | Jessamine, Night         |
| 5, 12, 32                                                                         |                          |
| Chaenomeles cathayensis                                                           |                          |
| 43                                                                                |                          |
| Chaenomeles japonica                                                              | Flowering Quince, Lesser |
| 14, 28, 43                                                                        |                          |
| Chaenomeles speciosa                                                              | Quince, Japanese         |
| 12, 43                                                                            |                          |
| Chamaebatiaria millefolium                                                        | Fernbush                 |
| 40                                                                                |                          |
| Chamaecyparis funebris                                                            | Mourning Cypress         |
| 4, 12, 28                                                                         | D + O C 1 1              |
| Chamaecyparis lawsoniana                                                          | Port Orford-cedar        |
| 3, 4, 12, 14, 16, 28, 36, 43, 44, 55                                              | A 1 1                    |
| Chamaecyparis nootkatensis 4, 43, 44, 55                                          | Alaska-cedar             |
|                                                                                   | Falsa Cypross Japanesa   |
| Chamaecyparis obtusa<br>14, 28, 43                                                | False Cypress, Japanese  |
| Chamaecyparis pisifera                                                            | Sawara Cypress           |
| 12, 14, 28, 43                                                                    | Sawara Cypress           |
| Chamaecyparis thyoides                                                            | Atlantic White-cedar     |
| 14, 18, 43                                                                        | rmanno mino-codar        |
| Chamaedorea elegans                                                               | Palm, Parlor             |
| 5, 32                                                                             | - willi, 1 will!         |
| -,                                                                                |                          |

Chamaerops humilis Palm, European Fan

5, 12, 14, 28, 32

Chamelaucium uncinatum Waxflower, Geraldton

12

Chilopsis linearis Desert Willow

4, 5, 40, 43, 56

Chimaphila umbellata Wintergreen

34

Chimonanthus praecox Wintersweet

5, 12, 14, 28, 43

Chionanthus retusus Fringe Tree, Chinese

14, 28, 43

Chionanthus virginicus Fringetree

5, 12, 14, 18, 19, 20, 25, 28, 29, 30, 32, 43, 45

Chordospartium stevensonii

12

Chorisia speciosa Floss-Silk Tree

5, 12, 32

Chorizema dicksonii Yellow-eyed Flame-pea

12

Chrysalidocarpus cabadae

12

Chrysalidocarpus lutescens Yellow Butterfly Palm

12

Chrysalidocarpus madagascariensis

12

Chrysalidocarpus species Palm

12

Chrysobalanus icaco Icaco, Coco-plum

12

Chrysothamnus greenei Rabbitbrush, Green

31

Chrysothamnus nauseosus Rabbitbrush, Rubber

5, 9, 17, 23, 28, 31, 34, 39, 40, 47, 54, 58

Chrysothamnus viscidiflorus Rabbitbrush, Mt. Little

9, 17, 23, 28, 31, 47, 58

Chukrasia tabularis

12

Cibotium species Tree Fern

12

Cinnamomum camphora Camphor Tree

5, 12, 14, 28, 32, 43

**COMMON NAME** 

Cissus species

5, 12, 32, 39

Cistus albidus

12

Cistus ladanifer

12, 28, 32, 39

Cistus salviifolius

12, 32

Cistus villosus var. corsicus

5, 8, 12, 32, 39

Citrus macrophylla

12

Cladrastis lutea

14, 20, 28, 38

Clematis columbiana

34

Clematis heracleifolia

43

Clematis ligusticifolia

23, 28, 34, 43

Clematis microphylla

12

Clematis montana

12

Clematis tangutica

12, 14, 28, 43

Clematis virginiana

43

Clematis vitalba

12, 28, 43

Clematis viticella

12, 14, 28, 43

Cleome isomeris

4, 8, 9

Clerodendrum tomentosum

12

Clerodendrum trichotomum

14, 43

Clethera species

14, 43

Cleyera japonica

12, 14, 25, 43

Treebine

Laudanum

Rock Rose, Mauve

Alemow

Yellowwood

Clematis, Blue

Western Virginsbower

Clematis

Woodbine

Traveller's Vine

Clematis, Italian

Bladderpod

Glory-bower

White Alder

Cliftonia monophylla Buckwheat Tree

43

Coccoloba uvifera Sea Grape, Platterleaf

12

Coccothrinax argentea Palm, Broom

12

Cochlospermum gillivraei

12

Coffee arabica Coffee

5, 12, 32

Coleonema pulchrum

12

Colutea arborescens Bladder Senna

12, 14, 28, 43

Comarostaphylis diversifolia Summer Holly

4

Comarostaphylis diversifolia var. planif

4

Conocarpus erectus Buttonwood

12

Coprosma species

5, 12, 32

Cordia sebestena Geiger Tree

12

Cordyline australis Dracaena, Giant

5, 12, 32

Cordyline australis var. atropurpurea Dracaena, Giant

32

Cordyline banksii

12

Cordyline baverii

12

Cordyline indivisa Dracaena, Blue

12, 14, 32

Cordyline stricta

12

Cordyline terminalis Hawaiian Good-Luck Plant

12, 32

Cornus alba Dogwood, Tartarian

12, 14, 28, 46

Cornus alba var. siberica Dogwood, Siberian

14, 28, 30, 43

# COMMON NAME

Dodwood, Pagoda Cornus alternifolia

5, 12, 14, 18, 19, 28, 30, 43, 45

Cornus amomum Dogwood, Silky

12, 14, 18, 19, 28, 30, 43, 45, 51

Cornus australis

28, 43

Cornus canadensis Dogwood, Bunchberry

8, 14, 19, 28, 34, 35, 43

Dogwood, Himalayan Cornus capitata

8, 12, 14, 28, 43

Cornus controversa Dogwood, Pacific

12, 14, 28, 43

Cornus drummondii Dogwood, Roughleaf

25, 28, 30, 43

Dogwood, Flowering Cornus florida

3, 5, 12, 14, 19, 20, 21, 25, 26, 28, 29, 30, 32, 34, 43, 51

Cornus glabrata Dogwood, Brown

4, 43

Dogwood, Kousa Cornus kousa

3, 8, 12, 14, 19, 28, 30, 43, 51

Cornelian Cherry Cornus mas

4, 12, 14, 28, 30, 43

Cornus nuttalli Dogwood, Pacific

3, 4, 5, 8, 12, 14, 16, 28, 34, 43

Cornus occidentalis Dogwood Western

Cornus officinalis Japanese Cornelian Cherry

12, 14, 30, 43

Cornus racemosa Dogwood, Gray

5, 12, 14, 18, 19, 28, 30, 43, 45, 51

Cornus rugosa Dogwood, Round-leaved

43

Cornus sanguinea Dogwood, Blood-twig

12, 14, 28, 30, 43

Cornus sericea Dogwood, Red-osier

5, 9, 12, 14, 17, 18, 19, 23, 28, 30, 34, 35, 40, 43, 51, 54, 55, 58 Dogwood, Pacific

Cornus sessilis

4, 43 Cornus walteri

43

Corokia species

Coronilla emerus Scorpion-senna

12

Corylopsis species Winter Hazel

43

Corylus americana Hazel, American

5, 14, 18, 19, 20, 28, 30, 43, 45, 51

Corylus avellena Hazelnut, European

12, 14, 28, 43

Corylus colurna Hazel, Turkish

12, 14, 28, 43

Corylus cornuta Hazel, Beaked

43

Corylus cornuta var. californica Hazelnut, Western

4, 28

Corylus heterophylla

28

Corynocarpus laevigata

12

Cotinus coggygria Smoketree

5, 14, 28, 30, 43

Cotinus coggygria var. atropurpea Smoketree, Purple Leaf

20, 30, 43

Cotinus obovatus Smoketree, American

20, 43

Cotoneaster acutifolia Cotoneaster, Peking

11, 12, 14, 23, 28, 31, 43, 45

Cotoneaster adpressus 12, 14, 28, 43

Cotoneaster apiculatus Cotoneaster, Cranberry

5, 12, 14, 43

Cotoneaster bullatus Cotoneaster, Vilmorin

12, 14, 28, 43

Cotoneaster dammeri

39, 43

Cotoneaster dielsianus Cotoneaster, Diel's

12, 14, 28, 43

Cotoneaster divaricatus Cotoneaster, Spreading

12, 14, 28, 43

Cotoneaster franchetii

12, 14, 28, 43

Cotoneaster glaucophyllus

# **COMMON NAME**

Cotoneaster horizontalis 5, 12, 14, 28, 32, 43 Cotoneaster integerrimus

28

Cotoneaster lacteus

12, 14, 28, 32, 43

Cotoneaster lucidus

28, 43

Cotoneaster microphyllus

14, 28, 43

Cotoneaster multiflorus

12, 14, 28, 43

Cotoneaster pannosus

12

Cotoneaster salicifolius

12, 14, 28, 43

Cotoneaster simonsii

12, 43

Couroupita guianensis

12

Cowania mexicana

9, 17, 31, 40, 58

Cowania mexicana var. stansburiana

4, 12, 23, 28, 34, 47, 54

Crataegus aestivalis

43

Crataegus arnoldiana

28

Crataegus azarolus

43

Crataegus brachyacantha

25, 43

Crataegus coccinea

28

Crataegus columbiana

4, 28, 34

Crataegus crus-galli

5, 12, 14, 18, 28, 30, 43, 45

Crataegus douglasii

4, 18, 28, 34

Crataegus erythropoda

28

Cotoneaster, Rock

Cotoneaster, Hedge

Cannonball Tree

Cowania

Hawthorn, Arnold

Azarole

Hawthorn, Blueberry

Hawthorn, Fireberry

Hawthorn, Red

Hawthorn, Cockspur

Hawthorn, Black

Hawthorn, Chocolate

# **COMMON NAME**

Crataegus intricata

14, 43

Crataegus intricata var. neobushii

28

Crataegus laevigata

12, 14, 28, 43

Crataegus marshallii

25, 28, 43

Crataegus mollis

5, 14, 28, 43, 45

Crataegus monogyna

12, 14, 43

Crataegus opaca

25, 29

Crataegus phaenopyrum

5, 12, 14, 18, 19, 20, 26, 28, 30, 43, 51

Crataegus pinnatifida

28

Crataegus pubescens

28

Crataegus punctata

12, 14, 28

Crataegus submollis

28

Crataegus succulenta

28

Crataegus viridis

28, 30, 43

Cryptomeria japonica

4, 12, 14, 28, 43

Cryptomeria japonica var. sinensis

4, 28

Cryptostegia grandiflora

12

Cunninghamia konishii

4, 43

Cunninghamia lanceolata

4, 28, 43

Cunonia capensis

12

Cupaniopsis anacardiopsis

5, 12, 32

Hawthorn, Monteer

Hawthorn, English

, **,** 

Hawthorn, Parsley

Hawthorn, Downy

Hawthorn, Riverflat

riawinorn, Kivernat

Hawthorn, Washington

Harretham Marriagn

Hawthorn, Mexican

Hawthorn, Dotted

Hawthorn, Fleshy

Japanese Cedar

Cryptomeria, Chinese

Rubber Vine

China Fir

China Fir

| SCIENTIFIC NAME                                 | COMMON NAME               |
|-------------------------------------------------|---------------------------|
| Cupressus arizonica                             | Cypress, Arizona          |
| 4, 5, 8, 11, 14, 16, 28, 32, 43, 44, 54, 55, 56 |                           |
| Cupressus bakeri                                | Cypress, Modoc            |
| 4, 12                                           |                           |
| Cupressus cashmeriana                           | Cypress, Kashmir          |
| 4                                               |                           |
| Cupressus duclouxiana                           | Cypress, Yunnan           |
| 4                                               | 31                        |
| Cupressus glabra                                | Cypress, Smoothbark Ariz. |
|                                                 | eypress, smeemean rinz.   |
| Cupressus goveniana                             | Cypress, Gowan            |
| 4, 34                                           | Cypicss, Gowan            |
|                                                 | Campaga Manda sina        |
| Cupressus goveniana var. pigmaea                | Cypress, Mendocina        |
| 12, 16                                          |                           |
| Cupressus guadalupensis                         | Cypress, Guadalupe        |
| 4                                               |                           |
| Cupressus lusitanica                            | Cypress, Mexican          |
| 4, 28, 41, 43                                   |                           |
| Cupressus lusitanica cv. benthamii              | Cypress, East Mexican     |
| 4                                               |                           |
| Cupressus macnabiana                            | Cypress, MacNab           |
| 4, 12, 43                                       | 31                        |
| Cupressus macrocarpa                            | Cypress, Monterey         |
| 4, 5, 12, 14, 28, 32, 43                        | Cypiess, Monterey         |
| Cupressus nevadensis                            | Cypress, Piute            |
| 4                                               | Cypiess, i lute           |
| •                                               | Cymraga Cargant           |
| Cupressus sargentii                             | Cypress, Sargent          |
| 4, 12, 43                                       | C 1, 1,                   |
| Cupressus sempervirens                          | Cypress, Italian          |
| 4, 5, 14, 28, 32, 43                            |                           |
| Cupressus sempervirens var. atlantica           | Cypress, Moroccan         |
| 4                                               |                           |
| Cupressus stephensonii                          | Cypress, Cuyamaca         |
| 4                                               |                           |
| Cupressus torulosa                              | Cypress, Bhutan           |
| 4, 28, 43                                       | 21                        |
| Cussonia paniculata                             | Cabbage Tree              |
| 12                                              |                           |
| Cussonia spicata                                | Cabbage Tree              |
| 12                                              | 2400450 1100              |
|                                                 | Palm Saga                 |
| Cycas species                                   | Palm, Sago                |
| 28                                              |                           |

Cydonia oblonga Quince, Common

28

Cydonia sinensis Quince, Chinese

28, 43

Cyphomandra betacea Tomato Tree

12

Cyphomandra fragans

12

Cyrilla racemiflora Leatherwood, Titi

43

Cytisus species Broom

12, 14, 28, 39, 43

Dacrydium cupressinum Rimu

12

Dacrydium franklinii Huon Pine

4

Dais cotinifolia

12

Dalbergia sissoo Sissoo

12

Dalea, Black

40

Dalea spinosa Smoke Tree

56

Daphne species

12

Darwinia citriodora

12

Dasylirion wheeleri Desert Spoon

56

Davidia involucrata Dove Tree

12, 14, 28, 43

Daviesia species

12

Decaisnea fargesii

43

Delonix regia Poinciana, Royal

4, 5, 12, 14, 28, 39

Dendromecon rigida Tree Poppy, Yellow

4, 8

Derris robusta Jewel Vine

**COMMON NAME** 

Tree Fern

Dicksonia species

12

Dillwynia juniperiana

12

Diospyros kaki Persimmon, Kaki

5, 12, 14, 28, 43

Diospyros lotus Date Plum

5, 12, 14, 28, 43

Diospyros texana Persimmon, Black

4

Diospyros virginiana Persimmon

4, 5, 12, 14, 20, 21, 25, 28, 29, 30, 43, 51, 53

Dirca palustris Leatherwood

20, 43

Disanthus cercidifolius

14, 43

Distylium racemosum Isu Tree

43

Dizygotheca elegantissima False Aralia

12, 32

Dodonaea cuneata Hopbush

12

Dodonaea truncatialis

12

Dodonaea viscosa

5, 12, 32, 56

Dodonaea viscosa var. purpurea Hopbush, Purple

4, 5, 12, 32, 39 *Dombeya burgessiae* 

12

Dracaena draco Dragon Tree

5, 12, 32

Dracaena umbraculifera

12

Dracophyllum species

12

Dryandra species

12

Duranta repens Golden-dewdrop, Skyflower

12

Durio zibethinus Durian

Dyssodia acerosa Dog Fir

17

Echinocereus coccineus Cactus, Claret Cup

40

Echium fastuosum Viper's Bugloss

5, 32, 39

Ehretia dicksonii

28

Ekebergia capensis

12

*Elaeagnus angustifolia* Russian-olive 4, 5, 12, 14, 17, 19, 23, 28, 30, 31, 34, 35, 40, 43, 45, 47, 51, 58

Elaeagnus commutata Silverberry

14, 18, 28, 34, 43, 54

Elaeagnus multiflora Elaeagnus, Cherry

12, 43

Elaeagnus umbellata Autumn Olive

12, 14, 19, 20, 25, 28, 30, 34, 43, 51

Elaeis guineensis Palm, Oil

12

Elaeocarpus species

12

Eleutherococcus senticosus Siberian Ginseng

28

Embothrium coccineum Chilean Fire Tree

12

Encelia californica Encelia, California

5, 8, 39

Encelia farinosa Brittlebrush

5, 8, 17, 39, 56

Encelia frutescens Brittlebush, Green

56

Enkianthus campanulatus

14, 43

Enkianthus perulatus

43

Entelea arborescens

12

Enterolobium cyclocarpum Elephant's-ear

12

Ephedra nevadensis Mormon Tea, Nevada

9, 17, 23, 28, 31, 34, 40, 43, 47, 58

## **COMMON NAME**

Ephedra viridis

9, 17, 23, 31, 34, 43, 47, 58

Eremophila glabra

12

Eremophila maculata

12

Erica species

12

Eriobotrya deflexa

5, 12, 32

Eriobotrya japonica

5, 12, 28, 32

Eriocephalus species

12

Eriogonum species

23

Eriogonum arborescens

8, 32

Eriogonum cinereum

8, 12

Eriogonum fasciculatum

5, 8, 12, 17, 34, 39, 47

Eriogonum giganteum

5, 8, 32, 39

Eriogonum parvifolium

8

Eriogonum umbellatum

8, 31, 47, 54, 58

Eriophyllum species

8, 39

Erythrina caffra

5, 12, 28, 32, 39

Erythrina corallodendrum

12

Erythrina crista-galli

5, 12, 14, 32

Erythrina flabelliformis

4, 56

Erythrina lysistemon

12

Erythrina suberosa

12

Mormon Tea, Green

Heath

Loquat

Buckwheat, Santa Cruz Isl

Buckwheat, Ashyleaf

Buckwheat, California

Buckwheat, Giant

Buckwheat, Coastal

Buckwheat, Sulphur Flower

Coral Tree

Coral Tree, Cockspur

Coral Tree, Southwestern

Erythrina vespertilio Gray Corkwood

12

Eucalyptus species

4, 5, 8, 12, 14, 16, 28, 32, 39, 43

Eucommia ulmoides Hardy Rubber Tree

12, 14, 28, 43

Eugenia myrtifolia

12

Eugenia uniflora Surinam Cherry

12, 32

Euonymus alata Euonymus, Winged

12, 14, 20, 28, 30, 43

Euonymus atropurpea Wahoo

14, 20, 28

Euonymus bungeana Euonymus

28, 30, 43

Euonymus europaea Spindle Tree, European

12, 14, 28, 43

Euonymus fortunei

14, 43

Euonymus hamiltoniana var. maackii

28, 43

Euonymus japonica Spindle Tree

43

Euonymus latifolia

28, 43

Euonymus occidentalis Wahoo, Western

4

Euonymus verrucosa Spindle Tree, Warty

28

Euphorbia leucocephala Pascuita

12

Euphorbia virosa

12

Euscaphis japonica

43

Euterpe edulis Palm, Assai

12

Evodia danielii Evodia, Korean

12, 14, 20, 28, 43

Evodia hupehensis Evodia, Hupeh

12, 28, 43

**COMMON NAME** 

Exochorda racemosa

14, 43

Fagraea bertereana

12

Fagus crenata

43

Fagus grandifolia

14, 18, 19, 25, 28, 29, 43

Fagus orientalis

14, 28, 43

Fagus sylvatica

3, 5, 12, 14, 19, 28, 43

Fallugia paradoxa

4, 9, 12, 17, 23, 34, 40, 47, 54, 58

Fatsia japonica

12, 14, 32 Feijoa sellowiana

5, 12, 14, 32

Fendlera rupicola

14, 40

Ficus species

5, 12, 28

Firmiana simplex

5, 12, 14, 28, 43

Fokienia hodginsii

Forestiera acuminata

Forestiera neomexicana

Forestiera segregata

12

Fothergilla gardenii

43

Fothergilla major

43

Fouquieria burragei

12

Fouquieria diguetii

Fouquieria splendens

12, 56

Pearlbush

Beech, Japanese

Beech, American

Beech, European

Apache-plume

Paper Plant

Feijoa

Fendlerbush, Cliff

Ficus, Fig

Chinese Parasol Tree

**Swamp Privet** 

Desert Olive

Witch Alder

Ocotillo

#### **COMMON NAME**

Franklinia alatamaha Franklin Tree

12, 14, 43

Fraxinus americana Ash, White

5, 12, 14, 18, 19, 20, 21, 25, 28, 30, 43, 45, 51, 53

Fraxinus angustifolia

28, 43

Fraxinus caroliniana Ash, Carolina

25

Fraxinus cuspidata Ash, Fragrant

40

Fraxinus dipetala Ash, Flowering

4

Frraxinus excelsoir Ash, European

12, 14, 28, 43

Fraxinus latifolia Ash, Oregon

4, 28

Fraxinus nigra Ash, Black

18, 43

Fraxinus ornus Ash, Flowering

12, 14, 28

Fraxinus oxycarpa

12

Fraxinus pennsylvanica Ash, Green

5, 12, 14, 18, 19, 20, 21, 25, 28, 29, 30, 33, 34, 51, 53

Fraxinus profunda Ash, Pumpkin

25, 43

Fraxinus quadrangulata Ash, Blue

21

Fraxinus uhdei Ash, Evergreen

5, 12, 32

Fraxinus velutina Ash, Velvet

5, 28, 32, 40, 43, 56

Fremontodendron californicum Fremontia, California

4, 5, 8, 12, 32, 43

Fremontodendron mexicanum Fremontia

4, 5, 32

Fuchsia procumbens

12

Galphimia glauca

12

Galvezia speciosa

**COMMON NAME** 

Garcinia mangostana

12

Gardenia species

12

Garrya species

4, 12

Gaultheria antipoda

12

Gaultheria procumbens

14, 43

Gaultheria shallon

14, 28, 32, 34, 43

Geijera parviflora

5, 12, 32

Genista species

12

Geonoma schottiana

12

Ginkgo biloba

4, 5, 12, 14, 19, 28, 30, 32, 43

Gleditsia aquatica

43

Gleditsia caspica

12, 14, 28, 43

Gleditsia triacanthos

5, 12, 14, 23, 28, 34, 43

Gleditsia triacanthos var. inermis

12, 14, 18, 19, 28, 30, 32, 33, 43, 45

Gliricidia sepium

12

Glyptostrobus lineatus

Gmelina arborea

12, 28

Gordonia lasianthus

43

Grayia brandegei

23

Grayia spinosa

9, 17, 23, 28, 47, 58

Grevillea banksii

12

Mangosteen

Silk-tassel

Wintergreen

Salal

Broom

Ginkgo

Waterlocust

Honeylocust

Honeylocust

Nicaraguan Cocoa-shade

Chinese Water Pine

Bay, Loblolly

Hopsage, Spineless

Hopsage, Spiny

Grevillea robusta Silk Oak

5, 12, 14, 28, 32

Grevillea synaphae

12

Grewia species

12

Greyia radlkoferi Natal Bottlebrush

12

Grindelia stricta Gumweed

8

Griselinia littoralis

12

Gymnocladus dioicus Kentucky Coffeetree

4, 12, 14, 18, 19, 20, 21, 28, 30, 43

Gypsophila paniculata Baby's Breath

28

Hakea species Pincushion Tree

5, 12, 28, 32

Halesia carolina var. carolina Carolina Silverbell

5, 12, 14, 19, 20, 28, 30, 43, 45

Halesia diptera Silverbell, Two-winged

12, 25, 43

Halesia monticola Silverbell Tree

12, 14, 43

Haloxylon species

28

Hamamelis japonica Witch-hazel, Japanese

12, 14, 28, 43

Hamamelis mollis Witch-hazel, Chinese

12, 14, 28, 43, 51

Hamamelis vernalis Witch-hazel, Ozark

14, 20, 43

Hamamelis virginiana Witch-hazel

5, 12, 14, 18, 19, 20, 25, 28, 30, 38, 43, 44, 45, 51

Hamelia patens Scarlet Bush, Firebush

12

Hardenbergia comptoniana

12

Hardenbergia violacea Vine-lilac, Coral-pea

**COMMON NAME** 

Kaffir Plum

Harpephyllum caffrum

nepnytium cajjrum

5, 12, 32

Harpullia pendula

12

Hebe species

12

Hedera helix English Ivy

12, 28

Hedeycarya arborea

12

Helicteres isora

12

Heteromeles arbutifolia Toyon

4, 8, 32, 39

Hibbertia scandens Snake Vine

12

Hibiscus ludwigii

12

Hibiscus mutabilis Confederate Rose

12

Hibiscus schizopetalus Hibiscus, Japanese

12

Hibiscus syriacus Althea-shrub

12, 14, 19, 28, 43

Hibiscus tiliaceus Mahoe

12, 32

Hippohae rhamnoides Sea Buckthorn

4, 12, 14, 28, 43

Holacantha emoryi Crucifixion Thorn

12

Holodiscus discolor Ocean Spray

14, 28, 34, 35, 54

Holodiscus dumosus Cliff Spirea

40

Holoptelea integrifolia

12

Homalanthus populifolius Queensland Poplar

12

Hovea species

12

Hovenea dulcis Japanese Raisin Tree

12, 14, 28, 43

Howea species Palm, Sentry

12

Hoya carnosa Wax Plant

12

Hydrangea anomala Hydrangea, Climbing

12, 14, 43

Hydrangea quercifolia

14, 43

Hydriastele wendlandiana

12

Hymenosporum flavum

5, 32

Hypericum calycinum Rose-of-Sharon

5, 12, 32, 43

Hypericum patulum

12, 43

Hypericum revolutum

12

Hyptis emoryi Desert Lavender

56

Idesia polycarpa Iigiri Tree

12, 28, 43

Idria columnaris Boojum

56

*Ilex aquifolium* Holly, English

5, 12, 14, 28, 43

*Ilex cassine* Dahoon, Cassina

12

*Ilex cornuta* Holly, Chinese

5, 12, 14, 28, 43

Ilex decidua Holly, Deciduous

12, 14, 20, 25, 43

Ilex glabra Gallberry

14, 43

Ilex latifolia Holly, Luster-leaf

28

Ilex opaca Holly, American

12, 14, 19, 20, 25, 29, 34, 43

Ilex pedunculosa

43

*Ilex serrata* Winterberry, Japanese

14, 43

Ilex verticillata Winterberry

12, 14, 18, 28, 34, 43, 51

*Ilex vomitoria* Yaupon 14, 25, 28, 29, 43

Indigofera species

Illicium verum Star Anise

28

Isopognon species

12 *Itea virginica* Sweetspire

25

Ixora coccinea Flame-of-the-woods 12

Jacaranda mimosifolia Jacaranda

5, 12, 28, 32, 39 Jacquinia pungens

12 Jamesia americana

Jasminum humile cv. revolutum Jasmine

Jasminum officinale Jasmine, Poet's

12

Jatropha curcas

28

Barbados Nut

Jatropha podagrica Tartogo

12
Juglans ailantifolia Walnut, Japanese

Juglans californica Walnut, California

4

*Juglans cinerea*14, 18, 20, 28, 30, 43, 45, 51

Juglans hindsii Walnut, Hinds

4, 28

Juglans major Walnut, Arizona

4, 43 *Juglans mandshurica*Walnut, Manchurian

14, 28, 43

Juglans microcarpa Walnut, Little 4, 28

|                                                            | W 1 + D1 - 1             |
|------------------------------------------------------------|--------------------------|
| Juglans nigra 5, 6, 14, 20, 25, 28, 29, 30, 33, 43, 45, 51 | Walnut, Black            |
| Juglans regia  Juglans regia                               | Walnut, English          |
| 5, 14, 43, 51                                              | Wallat, Eligion          |
| Juglans regia var. carpathian                              | Walnut, Carpathian Engl. |
| 28, 30, 43, 51                                             | , 1                      |
| Juniperus ashei                                            | Juniper, Ashe            |
| 4                                                          |                          |
| Juniperus californica                                      |                          |
| 4, 43                                                      | T                        |
| Juniperus chinensis                                        | Juniper, Chinese         |
| 4, 12, 14, 28, 43                                          | Innings Common           |
| Juniperus communis<br>4, 5, 12, 14, 28, 43                 | Juniper, Common          |
| Juniperus deppeana                                         | Juniper, Alligator       |
| 4, 14, 56                                                  | Jumper, Timgutor         |
| Juniperus formosana                                        |                          |
| 14, 28                                                     |                          |
| Juniperus horizontalis                                     | Juniper, Creeping        |
| 4, 28, 43                                                  |                          |
| Juniperus monosperma                                       | Juniper, Cherrystone     |
| 4, 14, 40, 43, 54                                          |                          |
| Juniperus occidentalis                                     | Juniper, Western         |
| 4, 16, 43                                                  | T . TT. 1                |
| Juniperus osteosperma                                      | Juniper, Utah            |
| 4, 12, 23, 47 Juniperus pinchotii                          | Juniper, Red-berry       |
| 4, 43                                                      | Jumper, Red-berry        |
| Juniperus rigida                                           | Juniper, Needle          |
| 43                                                         | , 1 ( <b>0 0</b> 0 1     |
| Juniperus scopulorum                                       | Juniper, Rocky Mountain  |
| 4, 11, 12, 14, 23, 28, 34, 35, 40, 43, 47, 54, 58          |                          |
| Juniperus silicicola                                       | Southern Red Cedar       |
| 4, 12, 14, 43                                              |                          |
| Juniperus virginiana                                       | Eastern Red Cedar        |
| 4, 5, 12, 14, 18, 19, 20, 25, 28, 29, 30, 34, 43, 4        |                          |
| Kalmia latifolia                                           | Laurel, Mountain         |
| 12, 14, 19, 43                                             | Castor Aralia            |
| Kalopanax pictus<br>12, 28, 43                             | Castor Aralia            |
| Kennedia species                                           | Coral Pea                |
| 5, 12, 32                                                  | Colui i Cu               |
| -,,                                                        |                          |

**COMMON NAME** 

Kerria japonica

12, 14, 28, 43

Keteleeria davidiana

4

Khaya nyasica

12

Khaya senegalensis

12

Kiggelaria africana

12

Knightia excelsa

12

Kochia prostrata

9, 17, 23, 31, 47, 58

*Koelreuteria bipinnata* 5, 12, 25, 32, 43

Koelreuteria paniculata

5, 12, 14, 19, 20, 25, 28, 30, 32, 33, 43

Kolkwitzia amabilis

12, 14, 28, 43 Kraussia floribunda

12

Kunzea species

12

Laburnum alpinum

5, 12, 14, 28, 43

Laburnum anagyroides

5, 14, 19, 28, 30, 43

Lagerstroemia floribunda

12

Lagerstroemia indica

5, 12, 14, 28

Lagunaria patersonii

12, 28

Lansium domesticum

12

Lapageria rosea

43

Larix x eurolepsis

28, 43

Larix decidua

14, 18, 19, 28, 43, 51

Japanese Rose

Nyasaland Mahogany

\_\_\_\_\_\_

Senegal Mahogany

Kochia

Goldenrain tree

Varnishtree

v armsmuee

Beauty Bush

Laburnum, Scotch

Chaintree

Crape Myrtle

Primrose Tree

Chilean Bellflower

Larch, Dunkeld

Larch, European

Larix gmelinii Larch, Dahurian

14, 28, 43

Larix gmelinii var. olgensis Larch, Olga Bay

28

Larix gmelinii var. principis-rupprechti Larch, Prince Rupprecht

28

Larix kaempferi Larch, Japanese

12, 28, 43

Larix laricina Tamarack

14, 18, 19, 28, 43, 57

Larix lyallii 4, 43

Larix occidentalis Larch, Western

3, 4, 12, 14, 28, 34, 43, 44

Larix sibirica Larch, Siberian

14, 28, 43

Larrea divaricata Creosotebush

17, 39

Larrea tridentata Creosotebush

40, 56

Latania loddigesii Palm, Latan

5, 12, 32

Laurelia novae-zealandiae

12

Laurus nobilis Sweet Bay

5, 12, 14, 32, 43

Lavatera assurgentiflora Tree Mallow, California

8

Leea coccinea West Indian Holly

5, 12, 32

Lepidozamia peroffskyana

12

Leptospermum species

5, 12, 28, 32

Lespedeza bicolor Clover Bush

12, 14, 28, 30, 43

Leucaena leucocephala Lead Tree

12, 32

Leucaena retusa Leucaena, Little-leaf

Leucospermum species Pincushion

12

Leucothoe fontanesiana Leucothoe, Drooping

12, 19, 43

Leycesteria formosa Himalaya Honeysuckle

43

Licuala species

12

Ligustrum japonicum Privet, Japanese

5, 12, 14, 25, 28, 32, 43

Ligustrum lucidum Privet

14, 25, 28, 32, 43

Ligustrum obtusifolium Privet, Regel's

43

Ligustrum ovalifolium Privet, California

12

Ligustrum sinense

12

Ligustrum vulgare Privet, Common

28, 43

Lindera benzoin Spicebush

14, 20, 21, 28, 43

Liquidambar formosana Formosan Gum

14, 28, 43

Liquidambar orientalis Sweet Gum, Oriental

43

Liquidambar styraciflua Sweet Gum 5, 12, 14, 19, 20, 21, 24, 25, 28, 29, 30, 32, 39, 43, 46, 53

Liriodendron chinensis Tulip Tree, Chinese

14, 28

Liriodendron tulipifera Tulip Tree, Yellow-poplar

5, 12, 14, 19, 28, 32, 43, 46, 51, 53

Lithocarpus densiflorus Tanbark Oak

4, 5, 28, 43

Livistona species Palm, Fan

5, 12, 14, 28, 32

Lonicera alpigena Honeysuckle

43

Lonicera ciliosa Honeysuckle, Trumpet

34

Lonicera involucrata Twinberry

Lonicera japonica Honeysuckle, Japanese

12, 14, 28, 43

Lonicera maackii Honeysuckle, Amur

14, 28, 30, 43

Lonicera quinquelocularis

43

Lonicera tatarica Honeysuckle, Tatarian

12, 14, 28, 30, 43, 51

Honeysuckle, Utah Lonicera utahensis

34

Lonicera xylosteum Honeysuckle, European Fly

28, 39, 43

Luculia gratissima 12

Lupinus arboreus Lupine, Tree

12, 28, 39

Lyonothamnus floribundus sbsp. asplenifolius Catalina Ironwood

Lysiloma microphyllum

12

Sabicu Lysiloma sabicu

12

Desert Fern Lysiloma thornberi

56

Maackii amurensis

14, 28, 43, 45

Macadamia Nut Macadamia integrifolia

5, 12, 32

*Macfadyena unguis-cati* Cat's-Claw Creeper

12, 32, 56

Mackaya bella

12

Maclura pomifera Osage-orange

4, 12, 14, 19, 28, 30, 43

Macropiper excelsum Pepper Tree, Kawa-Kawa 12

Magnolia x loebneri

Magnolia x soulangeana Magnolia, Chinese Saucer

Magnolia x soulangeana var. lennei

## **COMMON NAME**

Cucumber Tree Magnolia acuminata

14, 18, 19, 20, 28, 43

Magnolia ashei

43

Magnolia fraseri

19, 43

Magnolia grandiflora

5, 12, 14, 19, 20, 21, 25, 28, 32, 43

Magnolia heptapeta

12, 28, 43

Magnolia kobus

12, 14, 43

Magnolia macrophylla

4, 12, 25, 28, 43

Magnolia sieboldii

28, 43

Magnolia stellata

14, 20, 43

Magnolia tripetala Magnolia, Umbrella

21, 43

Magnolia virginiana

12, 19, 25, 28, 43

Mahonia aquifolium

3, 4, 5, 8, 12, 14, 25, 28, 32, 33, 34, 35, 39, 43

Mahonia bealei

5, 12, 32

Mahonia californica

Mahonia dictyota

Mahonia fremontii

Mahonia haematocarpa

4, 40, 56

Mahonia higginsiae

Mahonia lomariifolia

5, 12, 32

Mahonia nervosa

3, 5, 14, 28, 34, 43

Mahonia nevinii

4

Magnolia, Ashe

Magnolia, Fraser

Magnolia, Southern

Magnolia, Yulan

Magnolia, Bigleaf

Magnolia, Star

Magnolia, Sweetbay

Oregon Grape

Mahonia, Red

Oregon Grape

### **COMMON NAME**

*Mahonia pinnata* Mahonia piperana Mahonia pumila *Mahonia repens* Dwarf Oregon Grape 3, 4, 5, 11, 12, 14, 17, 23, 28, 31, 32, 33, 34, 35, 39, 40, 43, 54 Mahonia trifoliolata 4, 40 Malus x micromalus 28 Malus x zumi Crab Apple, Zumi 28, 43 Malus baccata Crab Apple, Siberian 5, 14, 28, 34, 43, 51 Malus baccata var. mandshurica Crab Apple, Siberian 14, 28, 30, 43 Malus brevipes Crab Apple, Oriental 34 Malus floribunda Crab Apple, Showy 5, 12, 14, 43 Crab Apple, Oregon Malus fusca Malus hupehensis Crab Apple, Tea 14, 28, 43 Malus ioensis Crab Apple, Prairie 28, 43 Malus prunifolia Apple, Plum-leaved 12, 28, 43 Malus pumila Apple, Common 12, 14, 19, 28, 43 Malus sargenti Crab Apple, Sargent 5, 14, 28, 30, 43, 51 Malus sieboldii Crab Apple, Toringo 14, 28, 43 Malus sylvestris Apple, Wild 12, 14, 28, 43 Malus toringoides 12, 14, 28, 43 Malus transitoria 28

**COMMON NAME** 

Malus yunnanensis

43

Manilkara roxburghiana

12

Manilkara zapota Sapodilla

12

Maytenus boaria Mayten

5, 12, 32

Medinilla magnifica

32

Melaleuca species Honey Myrtle

5, 12, 28, 32

Melia azedarach Chinaberry

5, 12, 14, 25, 28, 39

Melia toosendan

28

Melia ternata

12

Melicytus species

12

Meryta sinclairii Puka

12

Mespilus germanica Medlar

12, 14, 28

Mesua ferrea Gau-gau

12

Metasequoia glyptostroboides Dawn Redwood

4, 5, 12, 14, 28, 32, 43, 51

Metrosideros excelsus New Zealand Christmas Tree

12, 28, 32

Michelia champaca Champaca

12

Microcoleum weddellianum Palm, Weddel

12

Millettia dura

12

Mimosa polycarpa

12

Mimosa pudica Touch-Me-Not Plant

5, 14, 32

Mimosa scabrella Bracaatinga

SCIENTIFIC NAME **COMMON NAME** Monkey Flower Mimulus species 5, 8, 39 Mimusops elengi Spanish Cherry 12, 28 Mitchella repens Partridgeberry 43 Morinda citrifolia Indian Mulberry, Awl Tree 12 Horseradish Tree Moringa pterygosperma 12 Morus alba Mulberry, White 5, 14, 28, 34, 43 Morus alba var. tartarica Mulberry, Russian 14, 19, 28, 32, 43, 45 Mulberry, Black Morus nigra 5, 14, 28, 43 Morus rubra Mulberry, Red 14, 19, 43 Mucuna deeringiana Velvet Bean 28 Murraya paniculata Orange Jasmine 5, 12, 32 Myoporum species 12 Myrciaria jaboticaba 12 Myrica californica Bayberry, Pacific 4, 16, 39 Myrica cerifera Wax-myrtle 5, 12, 19, 25, 32, 43 Myrica pennsylvanica Bayberry, Northern 12, 14, 18, 19, 20, 21, 43 Myroxylon balsamum 12 Myrsine africana Cape Myrtle, Afr. Boxwood 12 Myrtus communis Myrtle 5, 12, 28, 32

Nandina domestica

12

Nannorrhops ritchiana

5, 12, 14, 19, 25, 28, 29, 32, 43

Heavenly Bamboo

Palm, Mazari

**COMMON NAME** 

Neodypsis species

12

Nerium oleander Oleander

5, 12, 32

Nicotiana glauca Tree Tobacco

12, 39

Noronhia emarginata

12

Nothofagus species

12, 43

Nuxia floribunda

12

Nyctanthes arbor-tristis Tree-of-sadness

12

Nymania capensis

12

Nypa fruticans Palm, Nypa

12

Nyssa aqautica Tupelo, Water

12, 14, 25, 28, 29, 43

Nyssa sylvatica var. sylvatica Blackgum

5, 12, 14, 18, 19, 20, 21, 25, 28, 29, 30, 32, 43, 51

Ochna serrulata Mickey-Mouse Plant

5, 12, 32

Oemleria cerasiformis Indian Plum

4, 12

Olea europaea Olive, Common

5, 12, 14, 28, 43

Olearia species Tree Aster

12

Orania sylvicola

12

Orixa japonica

43

Orphium frutescens

12

Ostrya carpinifolia Hop Hornbeam, European

12, 14, 28, 43

Ostrya virginiana Hop Hornbeam

14, 18, 19, 25, 28, 43

Oxydendrum arboreum Sourwood

12, 14, 19, 43

Pachira aquatica Guiana Chestnut

12

Paeonia suffruticosa Peony, Tree

14, 43

Paliurus spina-christi Christ's Thorn

12

Pandanus species Screw Pine

5, 12, 32

Pandorea pandorana Wonga-wonga Vine

12

Paranomus reflexus

12

Parkinsonia aculeata Jerusalem Thorn

4, 5, 12, 14, 28, 32, 39, 43, 56

Parmentiera cereifera Candle Tree

12

Parrotia persica Parrotia, Persian

14, 28, 43

Parrotiopsis jacquemontiana

43

Parthenocissus quinquefolia Virginia Creeper

5, 12, 14, 19, 20, 25, 28, 32, 43, 45

Parthenocissus tricuspidata Japanese Creeper

5, 12, 14, 19, 28, 32, 43

Passiflora edulis Passion Fruit

5, 12, 14, 32

Paulownia tomentosa Princess Tree

5, 12, 13, 14, 19, 20, 28, 43

Peltophorum dubium

12

Peltophorum pterocarpum Yellow-flame Poinciana

12, 28

Pentachondra pumila

12

Peraphyllum ramosissimum Squawapple

23, 47, 54

Persea borbonia Redbay

25, 43

Petteria ramentacea

43

Phellodendron amurense Amur Corktree

5, 12, 14, 18, 20, 28, 30, 43

COMMON NAME

Phellodendron chinense

Cork Tree

43

Phellodendron japonicum

43

Phellodendron sachalinense

Philadelphus coronarius

Mock Orange

43

Philadelphus lewisii

Mock Orange, Lewis

28, 34, 35 Phoenix species

Palm, Date

5, 12, 14, 28, 32

Photinia serrulata Chinese Hawthorn

5, 12, 28, 32

Photinia villosa

28, 43 Phyllanthus emblica

Emblic, Myrobalan

12

Phyllodoce empetriformis

Mountain Heather, Red

Physocarpus capitatus

Physocarpus opulifolius

Ninebark

12, 14, 18, 28, 43

Phytolacca dioica

12

Picea abies

Spruce, Norway

3, 4, 12, 14, 19, 22, 28, 38, 43, 51, 55

Picea asperata 4, 28, 43

Picea breweriana

Spruce, Brewer

4, 14, 28, 37, 43, 44

Picea engelmannii

Spruce, Engelmann

1, 3, 4, 5, 8, 11, 12, 14, 18, 28, 34, 36, 43, 44, 49

Picea glauca

Spruce, White

1, 4, 8, 12, 14, 18, 19, 28, 38, 42, 43, 44, 51, 55, 57

Picea glauca var. albertiana

Spruce, Western White

12, 14, 28, 43, 44

Picea glauca var. densata

Spruce, Black Hills

1, 3, 5, 11, 12, 14, 18, 28, 43, 45, 49, 51, 55

Picea glehnii

Spruce, Sakhalin

**SCIENTIFIC NAME COMMON NAME** Spruce, Yeddo Picea jezoensis 4, 14, 28, 43, 51 Picea koyamai Spruce, Koyama 28, 43, 51 Spruce, Black Picea mariana 4, 14, 18, 19, 28, 42, 43, 51, 57 Picea meyeri 4, 14, 28, 43 Picea obovata Spruce, Siberian 14, 22, 28, 43 Picea omorika Spruce, Serbian 3, 12, 14, 19, 22, 28, 43, 51, 55 Picea orientalis 12, 14, 28, 43 Picea polita Spruce, Tiger-tail 43 Spruce, Colorado Blue Picea pungens 4, 8, 11, 18, 32, 34, 55 Spruce, Blue Picea pungens var. glauca 1, 3, 5, 12, 14, 16, 17, 19, 28, 40, 43, 44, 49, 51, 54 Picea rubens Spruce, Red 12, 14, 19, 28, 43 Picea schrenkiana Spruce, Schrenkiana 28, 43 Picea sitchensis Spruce, Sitka 3, 4, 8, 12, 14, 16, 28, 36, 43, 44, 55 Picea smithiana Spruce, Himalayan 12 Picea tiashanica Picea wilsonii Spruce, Wilson's 4, 28 Pickeringia montana Chaparral Pea Pieris floribunda Fetterbush 12, 14, 19, 28, 43

71

Pieris japonica

Pigafetta filaris 12 Pimenta dioica

12

5, 12, 14, 19, 43

Lily-of-the-Valley Bush

Allspice, Pimento

#### SCIENTIFIC NAME COMMON NAME Fever Tree Pinckneya pubens 43 Pinus albicaulis Pine, White-bark 4, 14, 34, 43 Pinus aristata Pine, Bristlecone 3, 4, 5, 8, 11, 12, 14, 17, 28, 32, 43, 49, 51, 54 Pinus armandii Pine, Armand 4, 14, 28, 43 Pinus attenuata Pine, Knobcone 3, 4, 5, 14, 16, 28, 32, 37, 43, 50 Pinus attenuata x Pinus radiata Pine, Knobcone x Monterey 50 Pinus ayacahuite Pine, Mexican White 4, 43 Pinus balfouriana Pine, Foxtail Pinus banksiana Pine, Jack 4, 5, 12, 14, 18, 19, 28, 38, 42, 43, 51, 57 Pinus brutia var. eldarica Pine, Afghan 4, 5, 14, 16, 28, 32, 43 Pine, Lace-bark Pinus bungeana 4, 14, 28, 43, 51 Pine, Canary Island Pinus canariensis 5, 8, 12, 14, 28, 32, 43 Pine, Caribbean Pinus caribaea 5, 12, 14, 28, 41, 43, 46 Pine, Swiss Stone Pinus cembra 4, 5, 8, 12, 14, 28, 43 Pine, Mexican Pinyon Pinus cembroides 4, 8, 28, 43 Pinus chiapensis Pine, Chiapas White 4 Pinus clausa Pine, Sand 12, 24, 43 Pine, Lodgepole Pinus contorta 4, 5, 8, 12, 32, 34, 55 Pine, Lodgepole Pinus contorta var. contorta 3, 14, 16, 28, 36, 43, 44 Pinus contorta var. latifolia Pine, Rcky. Mtn. Lodgepol

4, 5, 8, 11, 14, 17, 28, 43, 44, 49, 54

*Pinus contorta* var. *murrayana* 3, 4, 14, 16, 28, 36, 43, 44

Pine, Sierra Lodgepole

### **SCIENTIFIC NAME COMMON NAME** Pine, Coulter Pinus coulteri 4, 5, 8, 12, 14, 16, 28, 32, 43

Pinus densiflora Pine, Japanese Red 5, 12, 14, 28, 32, 43, 51, 55

Pine, Shortleaf Pinus echinata

4, 12, 14, 24, 28, 29, 43

Pinus edulis Pine, Pinyon

4, 5, 11, 12, 14, 16, 23, 28, 32, 40, 47, 49, 54

Pinus elliottii var. elliottii Pine, Slash

4, 5, 11, 12, 14, 19, 24, 25, 28, 29, 32, 41, 43, 46

Pinus engelmanii Pine, Apache

4, 28

Pinus flexilis Pine, Limber

4, 5, 11, 12, 14, 17, 28, 43, 51, 54

Pinus gerardiana Pine, Nepal Nut

4, 43

Pine, Spruce Pinus glabra

14, 25, 29, 43 Pinus greggii

12

Pinus halepensis Pine, Aleppo

3, 4, 5, 8, 12, 14, 16, 28, 32, 39, 43

Pine, Benguet Pinus insularis

43

Pinus jefferyi Pine, Jeffrey

3, 4, 5, 8, 12, 14, 16, 28, 32, 36, 37, 43, 44

Pine, Kesiya Pinus kesiya

28

Pinus koraiensis Pine, Korean

3, 4, 5, 14, 28, 43

Pine, Sugar Pinus lambertiana

3, 4, 5, 8, 12, 14, 16, 28, 32, 36, 37, 43, 44

Pinus leucodermis Pine, Heldreich

3, 14, 28, 43

Pinus massoniana Pine, Masson's

4, 28, 43

Pinus maximartinezii

12

Pinus merkusii Pine, Tennaserim

Pine, Singleleaf Pinyon Pinus monophylla

4, 5, 11, 14, 16, 43

# COMMON NAME

| <i>Pinus montezumae</i> 4, 5, 12, 14, 28             | Pine, Rough-barked Mexica          |
|------------------------------------------------------|------------------------------------|
| 4, 3, 12, 14, 28 Pinus monticola                     | Pine, Western White                |
| 3, 4, 8, 12, 14, 28, 34, 36, 43, 44, 50, 55          | i me, western winte                |
| Pinus mugo                                           | Pine, Swiss Mountain               |
| 14, 28, 32                                           | ,                                  |
| Pinus mugo var. mugo                                 | Pine, Mugo                         |
| 3, 5, 8, 14, 19, 28, 43                              | · ·                                |
| Pinus mugo var. pumilo                               | Pine, Dwarf Mugo                   |
| 3, 5, 12, 14, 19, 28, 32, 43                         |                                    |
| Pinus muricata                                       | Pine, Bishop                       |
| 3, 4, 5, 12, 14, 16, 32, 36, 43                      |                                    |
| Pinus nigra                                          | Pine, Austrian                     |
| 1, 3, 5, 12, 14, 16, 19, 22, 28, 32, 43, 51, 55      |                                    |
| Pinus oocarpa                                        | Pine, Oocarpa                      |
| 4, 28, 41, 43, 51                                    |                                    |
| Pinus palustris                                      | Pine, Longleaf                     |
| 4, 5, 10, 12, 14, 15, 19, 24, 25, 28, 29, 32, 41, 4  |                                    |
| Pinus parviflora                                     | Pine, Japanese White               |
| 5, 8, 12, 14, 32, 43                                 | D: M : W II                        |
| Pinus patula                                         | Pine, Mexican Yellow               |
| 4, 5, 12, 14, 28, 32, 43                             | D: M 1 :                           |
| Pinus peuce                                          | Pine, Macedonian                   |
| 4, 12, 14, 28, 43                                    | Dina Claster                       |
| Pinus pinaster                                       | Pine, Cluster                      |
| 4, 5, 14, 28, 43                                     |                                    |
| Pinus pinceana<br>4                                  |                                    |
|                                                      | Pine, Italian Stone                |
| <i>Pinus pinea</i> 4, 5, 8, 12, 14, 16, 28, 32, 51   | rine, Italian Stolle               |
| 7, 5, 6, 12, 14, 10, 20, 32, 31  Pinus ponderosa     | Pine, Ponderosa                    |
| 1, 3, 4, 5, 8, 11, 12, 14, 16, 17, 18, 28, 32, 34, 3 |                                    |
| <i>Pinus pseudostrobus</i>                           | 70, 57, 10, 15, 11, 17, 51, 51, 55 |
| 4, 12, 43                                            |                                    |
| Pinus pumila                                         | Pine, Dwarf Siberian               |
| 4, 5, 14, 43, 51                                     | ,                                  |
| Pinus pungens                                        | Pine, Table Mountain               |
| 43                                                   | ,                                  |
| Pinus quadrifolia                                    | Pine, Parry Pinyon                 |
| 4                                                    |                                    |
| Pinus radiata                                        | Pine, Monterey                     |
| 4, 5, 8, 12, 14, 16, 28, 32, 36, 43, 44              | ·                                  |
|                                                      |                                    |

# COMMON NAME

| Pinus radiata var. binata<br>4                                                              |                       |
|---------------------------------------------------------------------------------------------|-----------------------|
| <i>Pinus resinosa</i> 1, 4, 12, 14, 18, 19, 28, 38, 42, 43, 51, 55, 57                      | Pine, Red             |
| Pinus rigida 12, 14, 19, 24, 28, 43                                                         | Pine, Pitch           |
| Pinus roxburghii 5, 12, 14, 16, 28, 32, 43                                                  | Pine, Chir            |
| 7, 12, 14, 10, 28, 32, 43  Pinus rudis  4                                                   |                       |
| <i>Pinus sabiniana</i> 4, 5, 8, 12, 14, 16, 28, 32, 36, 37, 43                              | Pine, Digger          |
| 4, 3, 8, 12, 14, 10, 28, 32, 30, 37, 43  Pinus serotina 4, 12, 14, 43                       | Pine, Pond            |
| Pinus strobiformis                                                                          | Pine, Southwest White |
| 1, 4, 11, 28, 43, 49, 54  Pinus strobus 1, 3, 5, 12, 14, 18, 19, 24, 27, 28, 29, 38, 42, 43 | Pine, Eastern White   |
| Pinus sylvestris 1, 3, 5, 8, 12, 14, 16, 19, 22, 28, 32, 34, 43, 44,                        | Pine, Scotch          |
| Pinus tabuliformis var. yunnanensis 28, 43                                                  | Pine, Yunnan          |
| Pinus taeda<br>4, 5, 10, 12, 14, 15, 19, 24, 25, 28, 29, 32, 41, 4                          | Pine, Loblolly        |
| Pinus taiwanensis 4, 28                                                                     | Pine, Formosa         |
| Pinus teocote 4                                                                             | Pine, Twisted-leaf    |
| <i>Pinus thunbergiana</i> 3, 4, 5, 12, 14, 19, 28, 32, 43, 55                               | Pine, Japanese Black  |
| Pinus torreyana<br>4, 5, 12, 14, 28, 32                                                     | Pine, Torrey          |
| Pinus virginiana<br>4, 5, 12, 14, 19, 24, 28, 29, 32, 46                                    | Pine, Virginia        |
| Pinus wallichiana 3, 4, 12, 28, 43, 55                                                      | Pine, Himalayan White |
| 3, 4, 12, 28, 43, 33<br>Piper nigrum<br>12                                                  | Pepper Plant          |
| Pistacia atlantica                                                                          | Mt. Atlas Mastic Tree |
| 5, 12, 28                                                                                   |                       |

## COMMON NAME

Cyprus-Turpentine

Pistacia chinensis

5, 12, 14, 25, 28, 32, 43

Pistacia terebinthus

12, 32

Pistacia texana Pistachio, American

43

Pistacia vera Pistacia, Nut

28, 43

Pithecellobium dulce Manila Tamarind

12, 28

Pittosporum crassifolium Karo

5, 12, 28, 32

Pittosporum dallii

12

Pittosporum eugenioides Tarata

5, 12, 32

Pittosporum phillyraeoides Pittosporum, Willow

5, 12, 32

Pittosporum ralphill

12

Pittosporum rhombifolium Pittosporum, Queensland

5, 32

Pittosporum tenuifolium Tawhiwhi - Kohuhu

5, 12, 32

Pittosporum tobira Pittosporum, Japanese

5, 12, 14, 28, 32, 43

Pittosporum undulatum Victorian Box

5, 12, 28, 32

Pittosporum viridiflorum Pittosporum, Cape

5, 28, 32

Platanus x acerifolia Planetree, London

5, 12, 32

Platanus occidentalis Sycamore

5, 12, 14, 19, 20, 24, 25, 28, 29, 30, 43

Platanus orientalis Planetree, Oriental

5, 12, 14, 28, 43

Platanus racemosa Sycamore, California

5, 12, 28, 32

Platanus wrightii Sycamore, Arizona

12, 40, 56

Platycladus orientalis Arborvitae, Oriental

4, 5, 12, 14, 28, 34, 43

**COMMON NAME** 

Platylobium formosum

12

Podalyria calyptrata Sweet Pea Bush

12, 28

Podocarpus darydioides Kahika, White Pine

12

Podocarpus gracilior African Fern Pine

5, 12, 32

Podocarpus henkelii

5, 12, 32

Podocarpus macrophyllus Japanese Yew

5, 12, 32

Podocarpus macrophyllus var. maki Japanese Yew

5, 14, 32

Podocarpus totara Totara Pine

12

Podranea brycei Queen-of-Sheba Vine

12

Podranea ricasoliana Pink Trumpet Vine

12

Poliothyrsis sinensis

43

Polyalthia species

12

Polyscias fruticosa Ming Aralia

12

Pomaderris kumeraho

12

Poncirus trifoliata Trifoliate Orange

12, 43

Pongamia pinnata Karum Tree, Poonga-Oil Tr

12

Populus tremuloides Aspen, Quacking

18, 28, 34, 35, 55

Porlieria augustifolium

4

Potentilla fruticosa Cinquefoil, Shrubby

40

Prinsepia sinensis Prinsepia, Cherry

14, 28, 43, 45

Pritchardia pacifica Palm, Fiji Fan

## **COMMON NAME**

Pritchardia thurstonii

12

Prosopis chilensis Algarrobo

5, 28, 32, 56

Prosopis juliflora Mesquite

5, 9, 12, 17, 28, 43, 56

Prosopis pubescens Screw-Bean

4, 5, 56

Protea species

12

Prunus americana Plum, American

9, 14, 17, 18, 19, 28, 30, 34, 40, 43, 45, 47, 51, 54, 58

Prunus andersonii Desert Peach

4, 9

Prunus angustifolia Plum, Chickasaw

25, 43, 53

Prunus armeniaca Apricot

14, 28, 43

Prunus avium Cherry, Mazzard

14, 28, 43

Prunus besseyi Cherry, Sand

5, 9, 11, 14, 28, 30, 34, 40, 43, 45, 54

Prunus campanulata Cherry, Taiwan

43

Prunus caroliniana Cherry Laurel

12, 14, 25, 28, 29, 32

Prunus cerasifera Plum, Myrobalan

14, 28, 43

Prunus cerasus Cherry, Sour

28, 43

Prunus davidiana Peach, David's

14, 28, 43

Prunus domestica Plum, Common European

28, 43

Prunus domestica sbsp. insititia Plum, Damson

28

Prunus dulcis var. amara Almond, Bitter

14, 28, 43

Prunus emarginata Cherry, Bitter

4, 34

Prunus fasciculata Almond, Desert

4, 23, 34, 47

#### SCIENTIFIC NAME **COMMON NAME** Apricot, Desert Prunus fremontii Prunus fruticosa Cherry, European Dwarf 28, 43 Prunus glandulosa Almond, Flowering 28, 43 Prunus ilicifolia Cherry, Holly-leaved 4, 5, 32 Prunus laurocerasus Cherry-laurel 4, 43 Prunus lusitanica Portugese Cherry-laurel Prunus lyonii Cherry, Catalina 4, 5, 32 Cherry, Maackii Prunus maackii 14, 28, 43 Prunus mahaleb Cherry, Mahaleb 5, 14, 28, 43 Plum, Beach Prunus maritima 14, 43 Prunus mexicana Plum, Mexican 5, 25 Prunus mume Apricot, Japanese 14, 28, 43 Prunus nigra Plum, Canada 43 Cherry, European Bird Prunus padus 14, 28, 43 Prunus pennsylvanica Cherry, Pin 14, 18, 28, 43 Peach Prunus persica 5, 14, 28 Prunus salicina Plum, Japanese 14, 28, 43 Prunus sargentii Cherry, Sargent 14, 43 Cherry, Black Prunus serotina 14, 18, 19, 20, 21, 25, 28, 30, 43, 45, 51 Prunus serotina sbsp. capuli Capuli

12

Prunus serrulata

14, 28, 43

Cherry, Oriental

**COMMON NAME** 

Prunus spinosa Blackthorn

28, 43

Prunus subcordata Plum, Sierra

4, 43

Prunus subhirtella Cherry, Rosebud

14, 43

Prunus tenella Almond, Dwarf Russian

5, 14, 28, 43

Prunus tomentosa Cherry, Nanking

5, 14, 28, 30, 34, 43, 51

Prunus triloba Almond, Flowering

28, 43

Prunus umbellata Plum, Sloe

25, 29

Prunus virginiana Chokecherry

9, 17, 18, 19, 28, 30, 31, 34, 35, 40, 43, 45, 47, 54, 58

Prunus virginiana var. demissa

4

Prunus virginiana var. melanocarpa Chokecherry, Black

4, 14, 23

Prunus yedoensis Cherry, Yoshino

14, 43

Pseudolarix kaempferi Golden Larch

4, 12, 14, 28, 43

Pseudopanax arboreus Five-fingers

12

Pseudopanax lessonii

12

Pseudotsuga macrocarpa Douglas Fir, Big Cone

4, 5, 28, 43

Pseudotsuga menziesii Douglas Fir

1, 3, 4, 5, 8, 12, 14, 16, 17, 18, 28, 32, 34, 36, 37, 43, 44, 48, 49, 50, 54, 55

Pseudotsuga menziesii var. glauca

Douglas Fir, Rocky Mounta

4, 5, 11, 12, 19, 28, 32, 44

Psidium littorale Guava, Yellow Strawberry

5, 12, 32

Psophocarpus tetragonolobus Asparagus Pea

43

Psychotria species Wild Coffee

12

Ptelea trifoliata Common Hoptree

12, 14, 18, 20, 28, 40, 43, 54

4, 5, 32, 43

### **COMMON NAME**

Pterocarya species Wingnut 28, 43 Pteroceltis tartarinowii 43 Pterospermum acerifolium Pterostyrax species **Epaulette Tree** 43 Ptychosperma elegans Palm, Alexander 5, 12, 32 Punica granatum Pomegranate 5, 12, 28, 32 Bitterbrush, Desert Purshia glandulosa 17, 23, 31, 47 Purshia tridentata Bitterbrush, Antelope 8, 12, 17, 23, 28, 31, 34, 39, 40, 47, 54, 58 Putterlickia pyracantha 12 Firethorn Pyracantha coccinea 5, 12, 14, 28, 43 Pyracantha crenulata Firethorn, Nepal Pyracantha rogersiana 12 Pyrus betulifolia Pear, Betulifolia 12, 14, 28, 43 Pyrus calleryana Pear, Calleryana 5, 12, 14, 19, 20, 25, 28, 30, 32, 43 Pyrus communis Pear, Common 5, 12, 14, 19, 28, 43 Pear, Sand Pyrus pyrifolia 12, 14, 28, 43 Pyrus serrulata 28, 43 Pyrus ussuriensis Pear, Chinese 12, 14, 28, 43 Quercus x heterophylla Oak, Bartram 43 Oak, Sawtooth Quercus acutissima 14, 20, 25, 28, 29, 30, 43, 45, 53 Oak, California Live Quercus agrifolia

| SCIENTIFIC NAME                                                                | COMMON NAME              |
|--------------------------------------------------------------------------------|--------------------------|
| Quercus alba                                                                   | Oak, White               |
| 14, 18, 20, 21, 25, 26, 28, 29, 30, 43, 51, 53                                 | 0.1.0 WI                 |
| <i>Quercus bicolor</i> 18, 20, 21, 26, 28, 30, 43                              | Oak, Swamp White         |
| Quercus cerris                                                                 | Oak, Turkey              |
| 28, 30                                                                         | , ,                      |
| Quercus chrysolepis                                                            | Oak, Canyon Live         |
| 4, 5, 12, 16, 28, 43                                                           | Oals Cambatt             |
| Quercus coccinea 5, 20, 21, 26, 28, 30, 32, 43                                 | Oak, Scarlett            |
| Quercus dentata                                                                | Oak, Daimyo              |
| 43                                                                             | ,                        |
| Quercus douglasii                                                              | Oak, Blue                |
| 4, 5, 16, 28, 32, 43                                                           | Oals California Cample   |
| Quercus dumosa<br>4, 5, 28, 43                                                 | Oak, California Scrub    |
| Quercus durata                                                                 | Oak, Leather             |
| 4                                                                              | ,                        |
| Quercus ellipsoidalis                                                          | Oak, Jack - Northern Pin |
| 43, 45                                                                         | Oals Emany               |
| Quercus emoryi 4                                                               | Oak, Emory               |
| Quercus engelmannii                                                            | Oak, Engelmann           |
| 4, 5                                                                           | , 6                      |
| Quercus falcata var. falcata                                                   | Oak, Southern Red        |
| 21, 25, 28, 29, 30, 43, 53                                                     | Oals Charmyhards         |
| <i>Quercus falcata</i> var. <i>pagodaifolia</i> 20, 21, 25, 28, 29, 30, 43, 53 | Oak, Cherrybark          |
| Quercus frainetto                                                              | Oak, Italian             |
| 43                                                                             |                          |
| Quercus gambelii                                                               | Oak, Gambel              |
| 4, 28, 31, 43, 54                                                              | Oak Oragan               |
| Quercus garryana<br>4, 5, 28, 43                                               | Oak, Oregon              |
| Quercus ilex                                                                   | Oak, Holly               |
| 5, 32, 43                                                                      |                          |
| Quercus ilicifolia                                                             | Oak, Scrub               |
| 43<br>Quercus imbricaria                                                       | Oak, Shingle             |
| 20, 21, 28, 30, 43                                                             | ouk, biningic            |
| Quercus incana                                                                 | Oak, Bluejack            |
| 25, 43                                                                         |                          |

| SCIENTIFIC NAME                                                                  | COMMON NAME         |
|----------------------------------------------------------------------------------|---------------------|
| <i>Quercus kelloggii</i> 4, 5, 16, 28, 32, 43                                    | Oak, Black          |
| Quercus laevis 43                                                                | Oak, Turkey         |
| Quercus laurifolia<br>5, 25, 32, 43                                              | Oak, Laurel         |
| Quercus laurifolia var. obtusa<br>25, 43                                         | Oak, Obtusa         |
| Quercus lobata<br>4, 5, 16, 28, 32, 43                                           | Oak, Valley         |
| Quercus lyrata<br>14, 21, 25, 28, 29, 43                                         | Oak, Overcup        |
| Quercus macrocarpa<br>5, 14, 18, 20, 21, 25, 26, 28, 29, 30, 43, 45, 51,         | Oak, Bur<br>57      |
| Quercus marilandica<br>20, 25, 43, 45                                            | Oak, Blackjack      |
| Quercus meuhlenbergii<br>20, 21, 30, 43, 45                                      | Oak, Chinkapin      |
| Quercus michauxii<br>20, 21, 25, 29, 43, 53                                      | Oak, Swamp Chestnut |
| Quercus myrsinifolia 43                                                          |                     |
| Quercus nigra<br>25, 28, 29, 43, 53                                              | Oak, Water          |
| Quercus nuttallii<br>20, 25, 28, 29, 43, 53                                      | Oak, Nuttall        |
| Quercus palustris 5, 14, 20, 21, 26, 28, 30, 32, 43, 51, 53                      | Oak, Pin            |
| Quercus petraea<br>43                                                            | Oak, Durmast        |
| Quercus phellos<br>5, 14, 20, 25, 28, 29, 30, 32, 43, 53                         | Oak, Willow         |
| Quercus prinoides 43                                                             | Oak, Chinquapin     |
| Quercus prinus 21, 28, 43                                                        | Oak, Chestnut       |
| Quercus robur<br>14, 28, 33, 43, 51                                              | Oak, English        |
| Quercus rubra<br>5, 14, 18, 19, 20, 21, 26, 28, 30, 32, 33, 43, 51,              | Oak, Northern Red   |
| 9, 14, 18, 19, 20, 21, 20, 28, 30, 32, 33, 43, 31,<br>Quercus sadlerana<br>4, 43 | Oak, Deer           |
|                                                                                  |                     |

| SCIENTIFIC NAME                                                 | COMMON NAME              |
|-----------------------------------------------------------------|--------------------------|
| Quercus shumardii                                               | Oak, Shumard             |
| 5, 20, 21, 25, 28, 29, 30, 32, 43, 45, 51, 53  Quercus stellata | Oak, Post                |
| 20, 21, 25, 28, 29, 43<br>Quercus suber                         | Oak, Cork                |
| 5, 32, 43 Quercus turbinella                                    | Oak, Desert Scrub        |
| 43, 54 Quercus vacciniifolia 4                                  | Oak, Huckleberry         |
| Quercus velutina<br>14, 20, 21, 25, 28, 43, 51, 53              | Oak, Black               |
| Quercus virginiana<br>5, 25, 29, 32, 43                         | Oak, Live                |
| Quercus wislizeni<br>4, 5, 16, 32                               | Oak, Interior Live       |
| Radermachera sinica<br>5, 12, 32                                |                          |
| Raphiolepis x delacourii 12                                     |                          |
| Raphiolepis indica 5, 12, 32                                    | Indian Hawthorn          |
| Raphiolepis umbellata                                           | Yedda Hawthorn           |
| 12, 32 Rauvolfia serpentina 12                                  | Serpentine Wood          |
| Ravenala madagascariensis 12                                    | Traveler's Tree          |
| Ravenea rivularis 12                                            |                          |
| Reinhardtia gracilis 12                                         |                          |
| Rhamnella franguloides 43                                       |                          |
| Rhamnus californica<br>4, 5, 8, 12, 16, 32                      | Coffeeberry              |
| Rhamnus californica sbsp. crassifolia 4                         | Coffeeberry, Velvet-leaf |
| Rhamnus californica sbsp. occidentalis                          | Coffeeberry, Northern    |

Rhamnus californica sbsp. tomentella 4

Coffeeberry, Chaparral

Rhamnus caroliniana Buckthorn, Carolina

14, 20, 25

Rhamnus cathartica Buckthorn, European

12, 14, 18, 19, 28, 43

Rhamnus crocea sbsp. ilicifolia Redberry

4

Rhamnus frangula Buckthorn, Alder

12, 14, 18, 28, 30, 43

Rhamnus koraiensis

43

Rhamnus purshiana Cascara Sagrada

4, 34

Rhamnus rubra Coffeeberry, Red-stem

4

Rhapis excelsa Lady Palm

5, 28

Rhigozum obovatum

12

Rhododendron species

12, 14, 19, 43

Rhodotypos scandens Jetbead

14, 43

Rhopalostylis species Palm, Nikau

12

Rhus aromatica Sumac, Fragrant

5, 12, 14, 20, 28, 30, 43

Rhus copallina Sumac, Shining

12, 14, 19, 20, 25, 28, 30, 43

Rhus glabra Sumac, Smooth

4, 5, 12, 14, 17, 18, 19, 25, 28, 30, 31, 34, 35, 40, 43, 45, 47

Rhus integrifolia Lemonade Berry

4, 58, 32, 39

Rhus lancea

5, 12, 32, 39, 56

Rhus laurina Sumac, Laurel

5, 8, 12, 32, 39

Rhus ovata Sugarbush

4, 5, 8, 32

Rhus punjabensis

43

Rhus trilobata Skunkbush

9, 14, 17, 23, 28, 31, 34, 40, 43, 47, 54, 56, 58

Rhus typhina Sumac, Staghorn

5, 12, 14, 18, 19, 28, 30, 43, 57

Rhynchosia senna var. texana Rosary Bean Vine

56

Ribes alpinum Currant, Mountain

28, 43

Ribes aureum Currant, Golden

17, 23, 28, 31, 34, 35, 40, 47, 54, 58

Ribes cereum Currant, Wax

9, 17, 23, 34, 47, 54

Ribes fasciculatum var. chinense Currant

43

Ribes inerme

43

Ribes nigrum Currant, Black

28

Robinia fertilis Locust, Bristly

14, 19, 28, 30, 43

Robinia neomexicanus Locust, New Mexico

4, 9, 17, 40, 43, 47

Robinia pseudoacacia Locust, Black

5, 12, 14, 18, 19, 21, 23, 28, 32, 33, 34, 43, 45, 51

Romneya coulteri California Tree Poppy

4, 5, 32

Rosa arkansana

43, 54

Rosa blanda Rose, Meadow

28, 43, 45

Rosa canina Rose, Dog

12, 14, 28, 34, 43, 54

Rosa carolina Rose, Pasture

12, 28, 43

Rosa chinensis Rose, China

12

Rosa davidii Rose, David's

28, 43

Rosa davurica

12

Rosa eglanteria Sweetbrier - Eglantine

12, 14, 43

**COMMON NAME** 

Rosa gymnocarpa Rosa, Wood

34

Rosa hugonis

12, 14, 28, 43

Rosa laevigata Rose, Cherokee

28

Rosa moyesii Rose, Moyes

12, 28, 43

Rosa multiflora Rose, Multiflora

5, 12, 14, 28, 43, 51

Rosa nutkana Rose, Nootka

28, 34, 35, 43, 54

Rosa palustris Rose, Swamp

43

Rosa rubrifolia Rose, Red-leaf

12, 14, 28, 43

Rosa rugosa Rose, Japanese

5, 12, 14, 28, 30, 43, 45, 51

Rosa setigera Rose, Prairie

43

Rosa spinosissima Rose, Scotch

12, 28, 43

Rosa virginiana Rose, Virginia

28, 43

Rosa wichuraiana Rose, Memorial

12, 14, 28

Rosa woodsii Rose, Woods

12, 14, 17, 23, 28, 31, 34, 35, 40, 43, 47, 54, 58

Rosa xanthina Rose, China

28, 43

Rothmannia species

12

Roystonea species Palm, Royal

12

Rubus species Blackberry, Raspberry

34, 43

Ruspolia hypocraterifromis

12

Sabal species Palmetto

12

Salix species Willow

| SCIENTIFIC NAME                                                    | COMMON NAME                           |
|--------------------------------------------------------------------|---------------------------------------|
| Salvia species 5, 8, 9, 12, 39                                     | Sage                                  |
| Sambucus caerulea<br>4, 9, 17, 23, 28, 31, 34, 35, 43, 47, 54, 58  | Elderberry, Blue                      |
| Sambucus canadensis<br>18, 20, 25, 43                              | Elderberry, American                  |
| Sambucus nigra<br>12, 14, 28                                       | Elderberry, European Black            |
| Sambucus pubens<br>43, 54                                          | Elderberry, American Red              |
| Sambucus racemosa<br>4, 12, 14, 17, 23, 28, 31, 34, 35, 43, 47, 58 | Elderberry, European Red              |
| Sambucus racemosa sbsp. pubens v. mlncrp 35                        | Elderberry, Black                     |
| Santalum album 12                                                  | Sandalwood, White                     |
| Sapindus drummondii 4, 12, 43                                      | Soapherry Chinese                     |
| Sapindus mukorossi<br>28<br>Sapium sebiferum                       | Soapberry, Chinese Chinese Tallowtree |
| 5, 14, 25, 28, 32, 43 Sarcobatus vermiculatus                      | Greasewood                            |
| 9, 17, 23, 31, 47, 58 Sarcococca species                           | Sweet Box                             |
| 5, 28, 32, 43<br>Sassafras albidum                                 | Sassafras                             |
| 19, 20, 21, 25, 30, 43, 51<br>Schefflera species                   | Umbrella Tree                         |
| 12, 32<br>Schima wallichii<br>28                                   |                                       |
| Schinus species 5, 12, 14, 28, 32, 39                              | Pepper Tree                           |
| Schisandra species 12, 28                                          | Magnolia Vine                         |
| Schismus barbatus 39                                               |                                       |
| Schizolobium parahybum 12                                          | T                                     |
| Schizophragma hydrangeoides<br>43                                  | Japanese Hydrangea                    |

**SCIENTIFIC NAME** 

**COMMON NAME** 

Schotia species Tree Fuschia

12

Sciadopitys verticillata Japanese Umbrella Pine 3, 12, 14, 28, 43

Securidaca longipedunculata

12

Securinega suffruticosa

43

Senna species

39

Sequoia sempervirens Redwood

3, 4, 5, 8, 12, 14, 16, 28, 32, 36, 43, 44, 55

Sequoiadendron giganteum Giant Sequoia

3, 4, 5, 8, 12, 14, 16, 28, 32, 34, 36, 37, 43, 44, 55

Serenoa repens Palmetto, Saw

12

Serruria florida Blushing-bride

12

Sesbania species

12

Shepherdia argentea Buffaloberry, Silver

4, 9, 12, 14, 17, 18, 28, 34, 35, 40, 43, 47, 54, 58

Shepherdia canadensis Buffaloberry

17, 23, 28, 34, 35, 43, 54

Shepherdia rotundifolia Buffaloberry, Roundleaf

4, 17, 31

Simmondsia chinensis Goat Nut - Jojoba

4, 5, 12, 28, 32, 40, 43, 56

Sinowilsonia henryi

43

Solanum aviculare Kangaroo Apple

12

Solanum capiscastrum False Jerusalem Cherry

12

Solanum dulcamara Nightshade, Poisonous

43

Sollya heterophylla Bluebell Creeper

5, 12, 32

Sophora affinis

4

Sophora chrysophylla Mamane

12

#### SCIENTIFIC NAME

#### **COMMON NAME**

Sophora japonica

5, 12, 14, 19, 20, 28, 30, 32, 43

Sophora macrocarpa

39

Sophora microphylla

12

Sophora secundiflora

4, 5, 12, 32, 40, 43, 56

Sophora tetraptera

12

Sophora tomentosa

12

Sorbaria sorbifolia

43

Sorbus alnifolia

28, 43

Sorbus americana

12, 14, 19, 28, 43, 51, 57

Sorbus aria

14, 43

Sorbus aucuparia

12, 14, 18, 28, 30, 43, 51

Sorbus decora

28, 35, 43

Sorbus discolor

28, 43

Sorbus domestica

12, 14, 43

Sorbus intermedia

12, 14, 43

Sorbus latifolia

43

Sorbus mougeotii

43

Sorbus pohuashanensis

28, 43

Sorbus scopulina

3, 12, 14, 23, 28, 34, 35, 43

Sorbus sitchensis

28, 34

Sorbus torminalis

12, 14, 28, 43

Japanese Pagoda Tree

Mescal Bean

Kowhai

Siverbush

False Spiraea

Mountain-ash, Korean

Tito diffiditi doll, Teoredii

Mountain-ash, American

White Beam

Mountain-ash, European

Mountain-ash, Snowberry

Service Tree

Mountain Ash, Chinese

Mountain Ash

Mountain Ash, Sitka

Wild Service Tree

#### SCIENTIFIC NAME COMMON NAME

Sparmannia africana African Hemp

12

Spartium junceum Spanish Broom

5, 12, 14, 28, 32, 39, 43 *Spathodea* species

12

Sphaeralcea ambigua

39

Spiraea species

34

Staphylea bumalda Bladdernut

43

Staphylea pinnata Bladdernut, European

43

Staphylea trifolia Bladdernut, American

18, 20, 43

Stenocarpus sinuatus Firewheel Tree

5, 12, 32

Stephanotis florabunda Madagascar Jasmine

12, 32

Sterculia foetida Indian Almond

12

Stewartia species

14, 43

Stictocardia beravensis

12

Strelitzia nicolai Bird-of-Paradise Tree

5, 12, 32

Strelitzia reginae Bird of Paradise

5, 12, 14, 28, 32, 43

Strongylodon macrobotrys Jade Vine

12

Strophanthus speciosus

12

Styrax americanus Snowbell

14, 25, 43

Styrax japonicus Snowbell, Japanese

12, 14, 28, 43

Styrax obassia Snowbell, Fragrant

14, 28, 43

Styrax officinalis var. californicus Snowdrop Bush

4, 43

SCIENTIFIC NAME COMMON NAME Cancerbush Sutherlandia frutescens Swietenia macrophylla Mahogany, Honduran 12 Mahogany, West Indian Swietenia mahagony 12 Symphoricarpos albus Snowberry 9, 14, 17, 28, 34, 35, 43, 47, 54, 58 Symphoricarpos mollis Snowberry, Creeping 34 Symphoricarpos occidentalis Wolfberry 28, 34, 43, 54, 58 Symphoricarpos orbiculatus **Indian Currant** 12, 14, 20, 28, 30, 43 Symphoricarpos oreophilus Snowberry, Mountain 9, 17, 23, 31, 34, 47, 58 Symplocos paniculata Sweetleaf, Asiatic 43 Sweetleaf Symplocos tinctoria 25, 43 Syringa x prestoniae 12 Lilac, Himalayan Syringa emodii 12 Syringa josikaea Lilac, Hungarian 12, 14, 43 Syringa oblata Lilac 14, 28, 43 Syringa pekinensis Lilac, Chinese 14, 28, 43, 45 Syringa reflexa

12 Syringa reticulata Lilac, Japanese Tree 14, 20, 28, 43, 45

Syringa villosa Lilac, Late

5, 12, 14, 28, 43, 45 Syringa vulgaris Lilac, Common

5, 12, 14, 19, 28, 30, 43, 45

Syzygium paniculatum Australian Brush Cherry 12, 32

Tabebuia chrysotricha Trumpet Tree

5, 12, 32

SCIENTIFIC NAME **COMMON NAME** 

Tabebuia pallida Trumpet Tree, Cuban Pink

12

Tabebuia rosea Trumpet Tree, Rosy

12 Taiwania cryptomeroides

Tamarix aphylla Athel

39

**Tamarisk** Tamarix gallica

12

Taxodium distichum **Bald Cypress** 

4, 5, 12, 14, 19, 20, 25, 28, 29, 30, 32, 43

Taxodium mucronatum Montezuma Cypress

4, 5, 14

Taxus x media

12

Taxus baccata Yew, English

5, 12, 14, 28, 43

Yew, Pacific Taxus brevifolia

4, 16, 28, 34, 37, 43, 50

Taxus canadensis Yew, Canadian

18

Taxus cuspidata Yew, Japanese

12, 14, 19, 28, 43

Yellowbells Tecoma stans

5, 12, 28, 32, 56

Tecomaria capensis Cape Honeysuckle

12, 32

Telopea species Waratah

12

Tephrosia species

12

Terminalia species

12, 28

Tetradymia spinescens Tetradymia

Tetrapanax papyriferus Rice-Paper Plant

12, 32

Theobroma cacao Cacao

Portia Tree Thespesia populnea

12, 32

| SCIENTIFIC NAME                                 | COMMON NAME                |  |
|-------------------------------------------------|----------------------------|--|
| Thevetia peruviana                              | Be-Still Tree              |  |
| 12, 32                                          |                            |  |
| Thrinax species                                 | Palm, Thatch               |  |
| 12                                              |                            |  |
| Thuja occidentalis                              | Northern White-cedar       |  |
| 1, 4, 5, 14, 18, 19, 28, 38, 43, 44, 45, 51, 57 |                            |  |
| Thuja plicata                                   | Redcedar, Western          |  |
| 3, 4, 5, 12, 14, 28, 34, 36, 43, 44, 48, 55     |                            |  |
| Thujopsis dolabrata                             | False Arborvitae           |  |
| 43                                              |                            |  |
| Tibouchina species                              |                            |  |
| 12                                              |                            |  |
| Tilia x europaea                                |                            |  |
| 12                                              |                            |  |
| Tilia americana                                 | Basswood                   |  |
| 5, 12, 14, 18, 19, 20, 28, 33, 43, 51, 57       | = <b>u</b> cs c c <b>u</b> |  |
| Tilia amurensis                                 | Linden, Korean             |  |
| 28, 43                                          | Zindon, Horodi             |  |
| Tilia cordata                                   | Linden, Littleleaf         |  |
| 12, 14, 19, 20, 28, 30, 33, 43, 51              | Ziiiddii, Ziiiididai       |  |
| Tilia dasystyla                                 | Linden, Crimean            |  |
| 28, 43                                          |                            |  |
| Tilia petiolaris                                | Linden, Pendent Silver     |  |
| 43                                              | ,                          |  |
| Tilia platyphyllos                              | Linden, Big-leaf           |  |
| 12, 14, 28, 43                                  | , 6                        |  |
| Tilia tomentosa                                 | Linden, Silver             |  |
| 12, 14, 20, 28, 43                              |                            |  |
| Tipuana tipu                                    | Tipu Tree                  |  |
| 5, 12, 28, 32, 39                               |                            |  |
| Torreya species                                 |                            |  |
| 4, 16, 28, 43                                   |                            |  |
| Trachycarpus fortunei                           | Windmill Palm              |  |
| 4, 12, 14, 32                                   |                            |  |
| Trachycarpus martianus                          |                            |  |
| 12                                              |                            |  |
| Trevesia palmata                                | Snowflake Plant            |  |
| 12, 32                                          |                            |  |
| Trichostema lanatum                             | Blue-Curls, Woolly         |  |
| 8, 39                                           | -                          |  |
| Triphasia trifolia                              | Limeberry                  |  |
| 12                                              |                            |  |
|                                                 |                            |  |

#### SCIENTIFIC NAME **COMMON NAME** Brisbane Box Tristania conferta 5, 12, 28, 32 Tristania laurina 12 Hemlock, Canadian Tsuga canadensis 1, 3, 5, 14, 18, 19, 24, 28, 34, 43, 44, 51 Tsuga caroliniana Hemlock, Carolina 14, 19, 27, 28, 43, 44 Tsuga chinensis Hemlock, Chinese 28, 43 Tsuga diversifolia Hemlock, Japanese 14, 43 Tsuga heterophylla Hemlock, Western 3, 4, 5, 12, 14, 28, 34, 36, 43, 44, 48, 55 Hemlock, Mountain Tsuga mertensiana 4, 14, 16, 28, 34, 36, 37, 43, 44 Hemlock, Siebold Tsuga sieboldii 14, 43 Tupidanthus calyptratus 5, 12, 32 Turraea obtusifolia South African Honeysuckle 12 Gorse - Furze - Whin *Ulex europaeus* 12, 14, 28, 43 Ulmus alata Elm, Winged 25, 43 Ulmus americana Elm, American 14, 28, 43 Ulmus crassifolia Elm, Cedar 43 Ulmus davidiana var. japonica Elm, Japanese 28 Ulmus glabra Elm, Wych 43 Elm, Chinese Ulmus parvifolia 5, 14, 25, 28, 30, 43 Ulmus pumila Elm, Siberian 5, 14, 28, 30, 43 Ulmus rubra Elm, Slippery

43

Umbellularia californica

4, 5, 12, 32

California Bay

SCIENTIFIC NAME COMMON NAME

Ungnadia speciosa Mexican Buckeye

4

Vaccinium arboreum Winter Huckleberry

25

Vaccinium corymbosum Blueberry, Highbush

12, 14, 43

Vaccinium membranaceum Huckleberry, Thin-leaf

28, 34, 35

Vaccinium myrtillus Whortleberry

43

Vaccinium ovatum Huckleberry, California

4, 8

Vaccinium parvifolium Huckleberry, Red

28, 34

Vaccinium scoparium Grouseberry

34

Vaccinium stamineum Deerberry

43

Vaccinium uliginosum Bog Bilberry

43

Veitchia merrillii Palm, Christmas

12

Verticordia species Feather Flower

12

Viburnum x burkwoodii

43

Viburnum x juddii

43

Viburnum acerifolium Viburnum, Mapleleaf

14, 21, 25, 43

Viburnum alnifolium Hobblebush

18, 43

Viburnum betulifolium

43

Viburnum carlesii Viburnum, Carlesii

30, 43

Viburnum cassinoides Viburnum, Withe-rod

18, 43

Viburnum cotinifolium

12

Viburnum dentatum Southern Arrowwood

5, 12, 14, 25, 28, 30, 43, 45

#### SCIENTIFIC NAME

#### **COMMON NAME**

Viburnum dilatatum 12, 14, 28, 30, 43 Viburnum ellipticum

Viburnum erubescens

Viburnum farreri 43

Viburnum ichangense

14, 43

Viburnum lantana

12, 14, 18, 28, 30, 43 Viburnum lentago

12, 14, 18, 19, 28, 30, 35, 43, 45

Viburnum opulus

5, 12, 14, 28, 43, 45 Viburnum plicatum var. tomentosum 43

Viburnum prunifolium

5, 14, 18, 19, 20, 28, 30, 43

Viburnum rhytidophyllum 12, 14, 28, 43

Viburnum rufidulum 20, 25, 28, 30, 43

Viburnum sargentii

12, 14, 28, 43

Viburnum setigerum 12, 14, 28, 43

Viburnum sieboldii

14, 28, 43

Viburnum trilobum

12, 14, 18, 19, 28, 30, 43, 51, 57

Viburnum wrightii 12, 14, 43

Viguiera laciniata

Virgilia species

12

Vitex agnus-castus

5, 12, 14, 43 Vitex lucens

12

Viburnum, Linden

Viburnum, Wayfaring

Nannyberry

European Cranberry Bush

Japanese Snowball

Blackhaw

Viburnum, Leatherleaf

Blackhaw, Rusty

Sargent Cranberry Bush

Highbush Cranberry

Leatherleaf

Cutleaf Goldeneye

Monk's Pepper Tree

Pururi

| SCIENTIFIC NAME                            | COMMON NAME        |
|--------------------------------------------|--------------------|
| Vitex negundo                              | Chaste Tree        |
| 12, 14, 28, 43                             |                    |
| Vitis coignetiae                           | Crimson Glory Vine |
| 14, 43                                     | •                  |
| Vitis riparia                              | Grape, River-bank  |
| 28, 34, 45                                 |                    |
| Washingtonia filifera                      | Palm, Desert Fan   |
| 5, 12, 14, 28, 32                          | D 1 TI 1           |
| Washingtonia robusta                       | Palm, Thread       |
| 5, 12, 14, 32<br>Weigela florida           |                    |
| 14, 43                                     |                    |
| Widdringtonia species                      | African Cypress    |
| 4, 28                                      | Timeum Cypress     |
| Wisteria floribunda                        | Wisteria, Japanese |
| 12, 14, 28, 43                             |                    |
| Wisteria frutescens                        |                    |
| 14, 43                                     |                    |
| Wisteria sinensis                          | Wisteria, Chinese  |
| 5, 12, 14, 25, 28, 32, 43                  |                    |
| Wrightia tinctoria                         |                    |
| 12<br>Xanthoceras sorbifolium              | Yellowhorn         |
| 28, 43, 51                                 | 1 CHOWHOTH         |
| Xanthorrhoea preissii                      |                    |
| 12                                         |                    |
| Xylococcus bicolor                         |                    |
| 4                                          |                    |
| Yucca aloifolia                            | Dagger Plant       |
| 5, 12, 14, 32                              | C : 1 D            |
| <i>Yucca baccata</i> 5, 14, 28, 34, 40, 43 | Spanish Bayonet    |
| 7, 14, 26, 34, 40, 43<br>Yucca brevifolia  | Joshua Tree        |
| 12                                         | Joshua Tree        |
| Yucca elata                                | Yucca, Soaptree    |
| 40, 56                                     |                    |
| Yucca filamentosa                          | Palm, Needle       |
| 5, 14, 25, 28, 30, 32, 34, 43, 51          |                    |
| Yucca glauca                               | Soapweed           |
| 5, 12, 14, 28, 40, 43, 58                  | Vyyaaa             |
| Yucca species                              | Yucca              |
| 9, 23                                      |                    |

SCIENTIFIC NAME

COMMON NAME

Our-Lord's-Candle

Yucca whipplei

12, 32, 56

Zanthoxylum species Prickly Ash

12, 43

Zelkova serrata Zelkova, Japanese

5, 12, 14, 19, 28, 32, 43

Zelkova sinica 14, 43

Ziziphus jujuba Jujube, Common

5, 12, 14, 28, 43

Ziziphus mauritiana Indian Jujube

12

Ziziphus mucronata

12, 28, 43

Ziziphus obtusifolia

4

Ziziphus obtusifolia var. canescens

4

Ziziphus parryi

4

Ziziphus spina-christi Christ Thorn

28, 39

# Section 5. Common Name Index

| Alaska-cedar         | 39 | Crabapple         | 66 |
|----------------------|----|-------------------|----|
| Alder                | 22 | Cypress           | 47 |
| Almond               | 79 |                   |    |
| Apple                | 66 | Dogwood           | 42 |
| Apricot              | 79 | Douglas fir       | 81 |
| Arborvitae           | 77 |                   |    |
| Ash                  | 54 | Eastern red cedar | 60 |
| Atlantic white cedar | 39 | Elderberry        | 89 |
| Autumn-olive         | 50 | Elm               | 96 |
| Baldcypress          | 94 | Fir               | 17 |
| Basswood             | 95 |                   |    |
| Beech                | 53 | Hackberry         | 38 |
| Birch                | 29 | Hawthorn          | 45 |
| Black locust         | 87 | Hazel             | 44 |
| Blackgum             | 69 | Hemlock           | 96 |
| Boxelder             | 19 | Hickory           | 34 |
| Buckeye              | 21 | Holly             | 58 |
|                      |    | Honey locust      | 55 |
| Catalpa              | 36 | Hophornbeam       | 69 |
| Cedar                | 37 | Hornbeam          | 34 |
| Cherry               | 79 | Huckleberry       | 97 |
| Chestnut             | 35 |                   |    |
| Chokeberry           | 26 | Incense-cedar     | 32 |
| Chokecherry          | 81 |                   |    |
| Cottonwood           | 78 | Juniper           | 60 |

| Kentucky coffeetree  | 56 | Poplar            | 78 |
|----------------------|----|-------------------|----|
|                      |    | Port-orfod-cedar  | 39 |
| Larch                | 61 |                   |    |
| Lilac                | 93 | Redbud            | 39 |
| Linden               | 95 | Redwood           | 90 |
|                      |    | Russian-olive     | 50 |
| Maple                | 18 |                   |    |
| Mimosa               | 22 | Sagebrush         | 26 |
| Mountain ash         | 91 | Saltbrush         | 27 |
| Mountain laurel      | 60 | Serviceberry      | 23 |
| Mulberry             | 68 | Sourwood          | 69 |
|                      |    | Spruce            | 71 |
| Ninbark              | 71 | Sumac             | 86 |
| Northern white cedar | 95 | Sweetgum          | 63 |
|                      |    | Sycamore          | 77 |
| Oak                  | 82 |                   |    |
| Osage-orange         | 64 | Tulip tree        | 63 |
|                      |    | Tupelo            | 69 |
| Pawpaw               | 26 |                   |    |
| Peach                | 80 | Walnut            | 59 |
| Pear                 | 82 | Western red cedar | 95 |
| Pecan.               | 34 | Witch-hazel       | 56 |
| Peppertree           | 89 |                   |    |
| Persimmon            | 49 | Yaupon            | 58 |
| Pine                 | 73 | Yellow-poplar     | 63 |
| Plum                 | 79 | Yew               | 94 |

# Appendix E

Dallas Urban Forest Advisory Committee Great Trinity Forest Management Plan Recommendations

### Dallas Urban Forest Advisory Committee

### Great Trinity River Forest Management Plan Recommendations

The Trinity River corridor contains complex ecosystems that have been impacted by many changes over the years. The Great Trinity Forest is the largest urban hardwood forest in America and it is a crown jewel as far as natural assets. Bottomland hardwood forest contains the most diverse habitat in Texas, which, unfortunately, is also the most endangered. As a result, the proper care and management of the Trinity Forest is of critical importance. A properly managed forest will increase populations of wildlife and their habitat; improve air, water and soil quality; increase aesthetic appeal; plus offer recreational opportunities. Proactive management of this precious resource will help to produce a world class park as a treasured and highly valued asset. A healthy and sustainable forest is indeed a worthy gift for present and future generations to enjoy.

Forest management is the practical application of scientific, social, and economic principals to the administration, operation, and maintenance of a forest. Proper forest management includes the proper care and control of a forested ecosystem to maintain and improve the health, vigor, flow of resources including wildlife and its habitat, recreational opportunities, air and water quality as well as aesthetic enhancement. The primary goal of a management plan for the Great Trinity Forest is to protect and enhance the ecosystems and to restore, manage, and preserve the forest, as well as to increase its value to society. The plan is an administrative document that offers guidance for all future management related affairs.

Regarding the future management of the Great Trinity Forest, the Dallas Urban Forest Advisory Committee offers the following recommendations:

#### **General:**

- Ensure that surrounding neighborhoods as well as all potential stakeholders are included as a part of the development process. Encourage input from all public and private entities interested in the various aspects of the project.
- ➤ Due to the limited access to the forest, carefully plan ideal access points and coordinate the planning with affected neighborhood groups. Access points can generate business development associated with the influx of people. Accurate access maps should be provided to the public that also specify significant features in the area, including local business locations.
- ➤ Produce a sound marketing campaign to promote the many recreational opportunities and encourage the public to experience the forest.
- ➤ Hold city functions and encourage other functions that bring the public into the forest.
- ➤ Urge transit authorities to include stops at or near access points for buses or the rail system. Continue to develop the area trail system to route as many trails as possible to access points for the forest. This will allow access without the need for a vehicle and encourage more usage of the available facilities.

- Any of the concepts expressed in these recommendations need to be conveyed to the public by utilizing educational graphics in various locations that are suitable. The addition of graphics that explain the ecological value of snags, brush piles or leaf litter, helps the public to understand why they are important. Graphics can be placed at specific locations that contain components of importance that allow for an illustration. "Edge Effect" is a concept in ecology which states that wildlife diversity will be greatest where various types of habitat meet and should be included in the theme for educational signage development. In the interior of the forest, we find only forest dwellers. In the interior of the grassland, we find only grassland dwellers. Where the habitat types meet, we find both types *plus* species which can use either.
- ➤ Consider calculating the amount of carbon sequestration by the forest as well as any other potential environmental benefits provided by the forest that may be quantified by sound science or research.

#### **Forest Management:**

- ➤ Carefully consider all aspects of forest ecosystem protection, management and usage, as well as the short and long term impacts of each action. The Trinity forest of the future should contain many different types of natural areas consisting of a wide diversity of plant and animal habitat.
- ➤ Work toward a healthy, future climax forest ecosystem with a very diverse number of shade and ornamental trees, shrubs, as well as understory plants. One of the goals should be to produce a forest containing trees of many various ages which allows for some resistance to pests or pathogens and produces better habitat, which ultimately creates a more sustainable forest.
- We highly recommend that the City of Dallas establish a Department of Urban Forestry to ensure that adequate resources and expertise are provided for the Trinity Forest. At present, there are at least five (5) separate city departments that deal with tree issues but no one authority that has the proper training, skills and education to adequately manage the forest. Most all progressive communities have a Department of Urban Forestry which provides one authority that is responsible for most, if not all, tree/forest related affairs. Since the Park Department manages the recreation within the forest there is no need to establish another authority to manage activities in the forest.
- ➤ Conserve pockets of species diversity. Where the forest ecosystem appears to be recovering and able to re-establish on its own accord, leave these areas alone and avoid upsetting the balance of nature.
- ➤ It is important that the removal, cutting, transplanting or pruning of trees require an approval from the city Urban Forester.
- Formulate specific objectives and plans for each year covered by the forest management plan, including each of the various intended uses.
- Manage each forest stand as its own ecosystem. Consider a more detailed analysis of all plants in each forest stand to include flora and fauna or what types of understory plants exist, such as any herbs, forbs, prairie plants or noxious weeds.
- As all aspects of the forest ecosystem are connected, we recommend that forest management plans also be integrated with management plans for soil, water and wildlife, but not cause a loss of floodplain storage capacity or topsoil.
- ➤ We highly recommend that the forest management plan encompass the entire Great Trinity Forest, including property inside and outside of the flood plain. Forested areas outside the flood plain are often a higher quality forest that will require some degree of

- maintenance in order to increase the health of the forest stand and to minimize the effect of invasive or problematic plants, insects and pathogens.
- Take into account the potential risk of flood damage or drought to the management plan goals and objectives in any given year.
- ➤ Consider studying and mapping any landmark or historic resource that may exist to support future planning efforts. Identify any natural resources that warrant protection.
- > Explore the possibility of marketing any resource that must be removed from the forested areas.
- Carefully consider access to the forest. Access equals ownership. Diverse groups need to be able to benefit from the forest, thereby building support for management objectives. Trails, trailheads, sufficient parking, roads, boat ramps and other access points should be carefully planned with public input as well as adequately budgeted. Wheelchair accessibility should also be considered.
- It should be required that the removal or planting of trees as well as any landscaping or public improvement projects within the Trinity Forest fully comply with city codes governing these affairs such as the Dallas tree ordinance, landscape ordinance, escarpment ordinance or any other applicable local, state or federal regulations.

#### **Forest Regeneration:**

- Due to a lack of species diversity in certain areas, consider the removal of all trees in small plots (or blocks) and replanting with species from the Dallas Urban Forest Advisory Committee's recommended species list for the Trinity Forest. The plots should be planted with a diversity of species that support the objectives of the forest management plan. Replanting in areas less prone to flooding and higher in elevation should include mast, as well as fruit and seed producing species to encourage the spread of future populations of ideal species. Planting large numbers of small seedlings (500-1000 per acre) will take into account expected future losses. Larger plant material may also be required in some plots. Some plots may also require the judicious use of chemicals to allow for some plants to establish. Sources for saplings may limit species availability and diversity; therefore, resources may include all western gulf region states. Due to the potential for flooding, consider planting trees in higher elevations first. Specific areas should be planted each year until management objectives are complete for species regeneration.
- > Tree plots and rows being planted should contain a diversity of species and include some understory species as well.
- > Seeding of some areas may also be an option.
- ➤ Consider establishing a city greenhouse/nursery that grows plants and trees from a local seed source or negotiate a contract with a local grower or nonprofit such as the Texas Trees Foundation, to produce plant stock from local plant seed that is grown specifically for the Trinity forest.
- > Species being utilized should have some tolerance for drought or flooding.

#### Wildlife:

➤ Consider establishing a comprehensive wildlife management plan that surveys for threatened or endangered animals or plants (HEP standards) and includes habitat stabilization/improvement.

- ➤ Complete an inventory of all existing wildlife species (and throughout the year) as well as their life cycle, habitat requirements and travel corridors.
- All due consideration should be provided for the hundreds of species of birds that reside or migrate through the forest. As one example, there is currently a Black-capped Vireo habitat restoration project underway in the Cedar Ridge Preserve.
- ➤ Wetlands will encourage waterfowl but must be properly established and maintained in perpetuity to effectively provide a benefit.
- ➤ One main objective is to increase the diversity of food producing plants in the area. Berries, seeds, nuts, nectar and vegetation are all important food sources for wildlife. It is also important to have these food sources available throughout all seasons of the year.
- Another main objective is to increase the structural diversity of the area or restore and supplement any layers of vegetation that are sparse or missing altogether. Wildlife habitat supports the greatest number of species when all the vegetation layers are present. The canopy layer (tall, mature shade trees) is needed to support canopy-dwelling birds and mammals such as the Tufted Titmouse, Northern Cardinal, woodpeckers, nuthatches, and squirrels. The midstory layer (smaller ornamental trees such as Texas Redbud and Mexican Plum) is important for those animals that spend significant amounts of time in the midstory such as Mourning Doves and Indigo Buntings. This layer also provides protection when animals move vertically between the canopy and the ground. The understory (shrubs, grasses, etc.) is important because it provides food and shelter for ground-dwelling and ground-feeding animals such as Northern Flickers, Kentucky Warblers, roadrunners, rabbits, and other small mammals.
- > Specific suggestions for vegetative layers include the following (A complete recommended species list is attached):

#### **Short understory plants**

Inland Seaoats (*Chasmathium latifolium*), Virginia Wildrye (*Elymus virginicus*), Sideoats Grama (*Bouteloua curtipendula*), Wild Columbine (*Aquilegia canadensis*), Butterfly Weed (*Asclepias tuberosa*), Winecup (*Callirhoe involucrata*), Purple Coneflower (*Echinacea purpurea*), Mealy Blue Sage (*Salvia farinacea*), Scarlet Sage (*Salvia coccinea*), Brown-Eyed Susan (*Rudbeckia hirta*).

#### **Understory shrubs**

Turk's Cap (*Malvaviscus arboreus* var. *drummondii*), Coralberry (*Symphoricarpos orbiculata*), American Beautyberry (*Callicarpa americana*), Texas Elbow-bush (*Forestiera pubescens*).

#### **Small Trees**

Mexican Plum (*Prunus mexicana*), Rusty Blackhaw Viburnum (*Viburnum rufidulum*), Redbud (*Cercis canadensis*), Aromatic Sumac (*Rhus aromatica*), Carolina Buckthorn (*Rhamnus caroliniana*), Red Buckeye (*Aesculus pavia*).

#### Vines

Passionflower (Passiflora incarnata)

- ➤ Open and sunny area should be enhanced by introducing many of our native bunch grasses and wildflowers. Wildlife species that are attracted to open, grassy areas are different than those attracted to wooded areas. Grassland plots can attract flycatchers and kingbirds.
- Recommended species for attracting Butterflies include many open and sunny area plants such as:
  - Brown-Eyed Susan (*Rudbeckia hirta*), Butterfly Weed (*Asclepias tuberosa*), Purple Coneflower (*Echinacea purpurea*), Mealy Blue Sage (*Salvia farinacea*), Scarlet Sage (*Salvia coccinea*), Plains Coreopsis (*Coreopsis tinctoria*), Lemon Mint (*Monarda citriodora*), and Indian Blanket (*Gaillardia pulchella*).
- ➤ Snags are usually cut down and hauled off because they are considered useless. However, this is not the case. Snags are as valuable to wildlife as living trees. Snags are often hollow which provides homes for squirrels, raccoons, opossums, and even bats. Woodpeckers often excavate their homes in snags. Once the woodpeckers have excavated a cavity and moved on, other species such as chickadees, bluebirds, and the tufted titmouse will move in and continue to use the cavity for seasons to come. Leave dead trees in areas of limited public use for animal habitat, when appropriate.
- When limbs or trees fall to the ground, they are called "downed wood". Downed wood is often removed because it too is considered useless. Once again, this is not the case. Downed wood provides homes for ground dwelling animals. Small mammals will use hollow logs to escape predators and inclement weather. Lizards, toads, and all types of invertebrates rely on the cool, moist microhabitat beneath the downed wood to survive. In addition to the wildlife benefits of downed wood, it also benefits the soil and surrounding vegetation. As the wood decays, nutrients locked inside are released into the soil and made available once again to the living vegetation. Removing the downed wood would remove a great source of nutrients critical to the continued health of the remaining vegetation.
- ➤ Brushpiles are similar to downed wood in their value to wildlife, except they serve slightly different clientele. Downed wood serves small mammals, reptiles, amphibians, and invertebrates. Brushpiles serve small mammals and reptiles to some extent, but they are especially valuable to songbirds. Songbirds will use the cover of brushpiles frequently while feeding. This is especially true in winter.
- ➤ Management plans should consider establishing habitat for any species of indigenous wildlife that is considered to be threatened or endangered currently or at any point in the future.
- ➤ It is important that management plans include protecting forest trees and plants as well as restoration project work sites from wildlife that may cause damage such as feral hogs, deer, beaver or others. Plans should fully address future threats to the ecological balance by the existence and or over population of damaging wildlife species. In some cases, managing populations of wildlife is preferred as opposed to eradication of a species.
- ➤ Leaf litter (the ground layer of fallen leaves) is much like downed wood in that it provides habitat for invertebrates and small lizards. The insects that are found in this layer are food for other animals and thus form much of the foundation of the food web. Skinks, for example, are specialized lizards that live their entire life cycle in the layer of leaves on the forest floor. They rummage beneath the leaves searching for the invertebrates that thrive there. Skinks, in turn, are food for roadrunners. Roadrunners could then be eaten by bobcats, and so on. In addition to its wildlife value, as leaf litter decays, it returns valuable nutrients to the soil. It also acts as a mulch which insulates the

- soil keeping it cooler in the summer and warmer in the winter. Having a layer of leaf litter on the ground helps the soil hold moisture and shields it from the erosive effects of the rain and wind. Because of these benefits, we recommend that leaf litter be allowed to accumulate wherever possible.
- Encourage and plan for areas with thick, dense cover or "Edge Habitat".

#### **Significant Trees:**

Consider a registry of significant trees listing G.P.S. coordinates, as well as other details, and consider adding the information to the Texas Tree Trails website (<a href="www.texastreetrails.org">www.texastreetrails.org</a>) to encourage ecotourism. Develop tree trail maps to significant trees that include GPS coordinates, similar to the Arboretum or Fort Worth Botanic Garden trails noted on the Texas Tree Trails website.

#### **Recreation:**

- Due to the fact that any recreational activity that occurs in the forest has the potential to affect the health of existing trees and forest stands, the Dallas Urban Forester and the Dallas Urban Forest Advisory Committee, should play a role in the planning of activities or development of any type that could affect trees.
- ➤ In general, the objective should be a balanced and inclusive approach to planning recreation related development and activities that include something for all possible interested parties. As a result, a plan for future activity and development must enjoy public support.
- Low impact trails and observation points should be a part of the future plans and any concrete required should be permeable to allow water absorption and reduce the heat island effect. Any concrete trails should be located on the exterior of the flood plain due to the potential for frequent flooding and high maintenance costs, if at all possible.
- ➤ It is important that management plans clearly state all future goals regarding the recreational use of the forest. Lower impact uses of the forest such as hike and bike trails, interpretive trails or birding trails are ideal due to the minimal impact on the existing ecosystems. River trails can be low impact if they do not involve the installation of a hard surface. However, access would need to be regulated as well as the type of traffic allowed on all trails. More active uses such as motorized vehicle trails or equestrian trails should be located outside the forested areas or important habitat areas as much as possible. These types of activities that are required within any important ecosystem should be carefully planned, executed, managed and policed, in an effort to minimize the impacts. There are areas that should have limited human intervention in order to conserve relatively undisturbed habitat or unique ecosystems.
- ➤ It is important that any development for recreation carefully consider the natural features of specific areas and every effort should be made to minimize the impacts of any development or activity on the natural features.

#### **Public Safety:**

➤ Consider public safety and security in the development of forest management and development plans. Security can become a concern due to the potential size of the park. Preventing crime could be a problem. Locating or rescuing an injured person may also become a concern.

Note to the public that there is safety in numbers and going alone into the forest involves some inherent risk.

#### **Hazard Trees:**

➤ Consider public safety by encouraging the establishment of a hazard tree policy for areas open to the general public. Although this will require funds to remove hazardous trees, the potential liability to the public more than warrants the expense in planning future budgets.

#### Fire:

- ➤ Consider the potential for fire to affect the property and develop potential plans/methods of prevention, control, and management, including associated expenditures. Any plans should be developed in coordination with the Dallas Fire and Rescue Department.
- In order to suppress invasive plant species and encourage native plant regeneration, expert supervised and controlled burning could be considered.

#### **Illegal Activities:**

All due consideration should be provided for any physical damage to trees, including the illicit removal of trees, plants, timber or important components of any existing ecosystem. Any planning should address the current problem with illegal dumping. Prevention is one part of the equation but clean up costs should also be calculated and considered as a part of the management plan.

#### Invasives:

- Consider establishing a sound management plan to fight invasive plants and sometimes non-native plants due to the potential to suppress beneficial plant species and alter wildlife habitat. The list of invasive plants may change over time but must include Chinese Privet (*Ligustrum sinense*), Japanese Ligustrum (*Ligustrum japonicum*) and Chinese Tallow (*Sapium sebiferum*).
- Ragweed, Johnsongrass, Bamboo, and Poison Ivy are also undesirable species for one reason or another. Ragweed is a native annual species that is to blame for the seasonal allergies that many of us have. Its presence is indicative of some type of disturbance to the soil. Anywhere the soil is plowed, scraped, or tilled, will soon become home to ragweed. Although ragweed is beneficial to wildlife (doves, northern Cardinals, Red Wing Blackbirds, finches, sparrows, etc. feed on the seeds), we recommend controlling it because of its affects on humans when it is possible. Because of its annual habits, ragweed can be knocked back by selectively cutting it in late August before it has a chance to flower and set seed. Cutting it sooner will allow it time to recover. Doing this for several seasons should significantly reduce the population (provided no future areas are disturbed). The judicious use of herbicide should only be considered as a last resort and many factors should be carefully considered.
- ➤ Poison ivy is also a native species that is valuable to wildlife (chickadees, Northern Mockingbirds, thrushes, woodpeckers, etc. feed on the seeds). However, we recommend keeping it cut away from any trail because of its affect on some people. The ideal method of control is cutting it back to the ground and digging out the roots. Due to the

- value to wildlife, the objective should be to manage poison ivy as opposed to the complete eradication of it.
- Any bamboo that is found on city property has little value to wildlife other than providing dense cover, plus it is an exotic plant. We recommend controlling or removing bamboo by cutting back the top growth and physical removal of the root system, where it is practical and not damaging to nearby trees. Chemical control has not been effective and management of the problem can be an ongoing effort.
- ➤ Johnsongrass is an exotic grass that was originally introduced in the U.S. from Africa as a pasture grass. It has since become a tremendous problem for those of us who prefer our native grasses. Johnsongrass will eventually take over an area and out-compete the natives. Although we prefer not to use herbicides, we have no cost effective method as an alternative. As a result selective use of glyphosphate (Roundup) may be required as a control measure. However, Roundup and other herbicides will also kill desirable plants; therefore, we recommend that herbicides be used carefully and as a last resort.

#### **Financial:**

- ➤ It is very important that the city provide adequate funding that is commensurate with the task of managing the largest urban hardwood forest in America. Any and all outside sources of potential funding should be pursued. Consider offering the ability to "adopt" a particular feature such as a stand of trees, a campground or others in lieu of a substantial donation that provides for the future care and maintenance of the feature or the forest as a whole. A management plan for the forest without a substantial financial commitment from the city is of little use.
- ➤ Calculate a financial analysis and annual budget for each action proposed in the plan, along with a detailed annual time line.
- It is important that future budgets take into consideration potential inflation and changes regarding labor/material costs.
- ➤ Consider listing options for funding future management objectives, including the establishment of an endowment. Without a significant financial commitment from the public and the city, the benefits of the plan will be compromised.
- Establish a substantial budget specifically for a marketing campaign which promotes the forest as an international habitat center. Without exposing the public to the significant opportunities and resources that exist in the forest, public acceptance and support for future initiatives will be difficult. Public ownership of the forest will be required to advance many future goals and objectives.

Respectfully submitted on behalf of the City of Dallas Urban Forest Advisory Committee,

Steve Houser Committee Chair City Hall 1500 Marilla St., Room 6FN Dallas Texas 75201

Office: 972-442-1524 Fax: 972-429-0012 Email: <u>Steve.Houser@dallastrees.org</u>
Website: <u>www.dallastrees.org</u>

# Appendix F

Dallas Urban Forest Advisory Committee Great Trinity Forest Recommended Plant Species

# **Dallas Urban Forest Advisory Committee**

# **Great Trinity Forest**

# **Recommended Species List**

All of the species below will require a source for seeds, saplings or small container grown or field grown plants. Preference should be given to a local source for the plant materials and seeds; however, expansion of the plant resources may include the greater southwest area, if required. Some of the species are listed as a reference for use in public areas and some may not be suitable for use in a forested area. A number of the species listed are not considered to be native but all of them have the potential to become viable species given the right conditions. Due to the limited number of species that currently exist in the Trinity forest, many of the following are recommended in an effort to diversify the composition of species in the forest. A more diverse forest will attract a more diverse group of wildlife and will be more sustainable than a forest with a limited number of plant and tree species.

#### **Shade Trees:**

- ✓ Pecan, Carya illinoensis
- ✓ Ginkgo, Ginkgo biloba
- ✓ Live Oak, Quercus virginiana, Quercus fusiformis
- ✓ Bur Oak, *Quercus macrocarpa*
- ✓ Chinquapin Oak, Quercus muhlenbergii
- ✓ American Elm, *Ulmus americana*
- ✓ Cedar Elm, *Ulmus crassifolia*
- ✓ White Ash, *Fraxinus americana*
- ✓ Texas Ash, Fraxinus texensis
- ✓ Bald Cypress, *Taxodium distichum*
- ✓ Arizona Cypress, Cupressus arizonica
- ✓ Eastern Red Cedar, Juniperus virginiana
- ✓ Black Jack Oak, Quercus marilandica
- ✓ Shumard Red Oak, Quercus shumardii
- ✓ Post Oak, Quercus stellata
- ✓ Osage Orange, *Maclura pomifera*
- ✓ Red Mulberry, *Morus rubra*
- ✓ Gum Bumelia, Bumelia lanuginosa
- ✓ Eastern Persimmon, *Diospyros virginiana*
- ✓ Thornless Honey Locust, *Gleditsia triacanthos* var. *inermis*
- ✓ Eve's Necklace, Sophora affinis
- ✓ Black Walnut, Juglans nigra
- ✓ Texas Walnut, *Juglans microcarpa*

- ✓ Western Soapberry, Sapindus drummondii
- ✓ Bigtooth Maple, *Acer grandidentatum*
- ✓ Caddo Maple, variant of *Acer saccharum* Marsh, from trees native to SW Oklahoma

#### **Ornamental Trees:**

- ✓ Desert Willow, *Chilopsis linearis*
- ✓ Red Buckeye, *Aesculus pavia*
- ✓ Texas Pistache, *Pistacia texana*
- ✓ Eastern Redbud, *Cercis canadensis*
- ✓ Texas Redbud, Cercis canadensis var. texensis
- ✓ Saucer Magnolia, Magnolia soulangeana
- ✓ Smooth Sumac, Rhus glabra
- ✓ Prairie Flameleaf Sumac, *Rhus lanceolata*
- ✓ Common Prickly Ash (Hercules Club), Zanthoxylum clava-herculis
- ✓ Texas Mountain Laurel, Sophora secundiflora
- ✓ Carolina Cherry Laurel, Prunus caroliniana
- ✓ Mexican Plum, Prunus mexicana
- ✓ Rusty Blackhaw Viburnum, Viburnum rufidulum
- ✓ Havard Shin Oak, Quercus havardii
- ✓ White Shin Oak, *Quercus sinuata* var. *breviloba*
- ✓ Durand Oak, Quercus durandii
- ✓ Lacy Oak, Quercus laceyi
- ✓ Vasey Oak, Quercus pungens, var. vaseyana
- ✓ Texas Hawthorne, Crataegus texana
- ✓ Wild Goose Plum, *Prunus munsoniana*
- ✓ Possumhaw Holly, *Ilex decidua*
- ✓ Carolina Buckthorn, *Rhamnus caroliniana*
- ✓ Texas Persimmon, *Diosypros texana*
- ✓ Catclaw Acacia, Acacia wrightii
- ✓ Golden Ball Lead Tree, Leucaena retusa
- ✓ Mexican Buckeye, *Ungnadia speciosa*
- ✓ Texas Buckeye, Aesculus arguta
- ✓ Reverchon Hawthorne, Crataegus reverchonii
- ✓ Green Hawthorne, *Crataegus spp*.

#### **Shrubs and Forbs:**

- ✓ American Beautyberry, Callicarpa americana
- ✓ Illinois Bundleflower, *Desmanthus illinoensis*
- ✓ American Elderberry, Sambucus canadensis
- ✓ Partridge Pea, Casia fasciculata
- ✓ Obedient Plant, *Physostegia intermedia*
- ✓ Pink Evening Primrose, *Oenothera speciosa*
- ✓ Clasping Coneflower, *Dracopis amplexicaulis*
- ✓ Common Sunflower, *Helianthus annuus*
- ✓ Scarlet Sage, Salvia coccinea
- ✓ Wood violet, Viola missouriensis
- ✓ Spiderwort, *Tradescantia occidentalis*
- ✓ Buttonbush, *Cephalanthus occidentalis*
- ✓ Texas Elbow-bush, *Forestiera pubescens*

- ✓ Cardinal flower, *Lobelia cardinalis*
- ✓ Winecup, Callirhoe involucrata
- ✓ Turk's Cap, *Malvaviscus drummondii*
- ✓ White Boneset, *Eupatorium serotinum*
- ✓ Texas Gold Columbine, Aquilegia hinklei
- ✓ Wild Columbine, Aquilegia canadensis
- ✓ Passionflower vine, *Passiflora incarnata*
- ✓ Coral Honeysuckle (climbing vine), *Lonicera sempervirens*
- ✓ Frostweed, Verbesina virginica
- ✓ Pigeonberry, Rivina humilis
- ✓ Frogfruit , *Lippia nodiflora*
- ✓ Purple Coneflower, *Echinacea purpurea* (well drained soil)
- ✓ Cutleaf Daisy, *Engelmannia pinnatifida*
- ✓ Brown-eyed Susan, Rudbeckia hirta
- ✓ Texas Bluebells, Eustoma grandiflora
- ✓ Coralberry, Symphoricarpos orbiculatus
- ✓ False Indigo, *Amorpha fruticose*
- ✓ Wood Ferns, *Dryopteris spp*.
- ✓ Trout Lily, *Erythronium albidum*
- ✓ Plains Coreopsis, *Coreopsis tinctoria*
- ✓ Dwarf Palmetto, Sabal minor
- ✓ Wild Petunia, *Ruellia nudiflora*
- ✓ Rain-lily, *Cooperia drummondii*
- ✓ Horseherb, Calyptocarpus vialis
- ✓ White honeysuckle, *Lonicera albiflora*

#### Grasses:

- ✓ Eastern Gamagrass, *Tripsacum dactyliodes*, blackland eco-type
- ✓ Texas Cupgrass, *Eriochloa sericea*
- ✓ Upland Switchgrass, *Panicum virgatum*
- ✓ Switchgrass, Panicum virgatum
- ✓ Sideoats grama, Bouteloua curtipendula
- ✓ Texas Wintergrass, Nassella leucotricha
- ✓ Inland Sea Oats, *Chasmanthium latifolium*
- ✓ Little Bluestem, Schizachyrium scoparium
- ✓ Prairie Wildrye, *Elymus canadensis*
- ✓ Sand Lovegrass, *Eragrostis trichodes*
- ✓ Indiangrass or Waco Indiangrass, *Sorghastrum nutans*
- ✓ Big Bluestem, *Andropogon gerardii*
- ✓ Green Sprangletop, Leptochloa dubia
- ✓ Lindheimer's Muhly, *Muhlenbergia lindheimeri*

#### Literature Cited

Native Prairies Association of Texas. 2007. Native Grass Seed Suppliers. < <a href="http://texasprairie.org/">http://texasprairie.org/</a>> Accessed 10 Oct 2007.

Texas Forest Service. 1999. Texas Forest Service Best Management Practices Product and Vendor Guide. <a href="http://txforestservice.tamu.edu/uploadedFiles/Sustainable/bmp/bmp\_product\_vendor\_guide.">http://txforestservice.tamu.edu/uploadedFiles/Sustainable/bmp/bmp\_product\_vendor\_guide.</a> pdf > Accessed 10 Aug 2007.

Texas Forest Service. 2007. Forest Services Vendor Database. <a href="http://tfsfrd.tamu.edu/Vendors/Default.htm">http://tfsfrd.tamu.edu/Vendors/Default.htm</a> > Accessed 1 Aug 2007.

USDA Forest Service. 1995. Commercial Suppliers of Tree and Shrub Seed in the United States.

Miscellaneous Report R8-MR 33, USDA Forest Service, Southern Region, State and Private Forestry.

<a href="http://www.nsl.fs.fed.us/Commercial%20Suppliers%20of%20Tree%20and%20Shrub%20Seed.p">http://www.nsl.fs.fed.us/Commercial%20Suppliers%20of%20Tree%20and%20Shrub%20Seed.p</a> df > Accessed 10 Dec 2007.